EARL
Comparison of surface runoff, nutrient and material mobilization and erosion through heavy precipitation of agricultural areas - Designing an innovative, long-term, high-resolution measurement field at the Bavarian Agricultural Institute in Lower Bavaria
Erosion happens in many fertile and agricultural intensively used regions world-wide. At the same time, scientists expect more frequent and intense erosive precipitation events and droughts with proceeding climate change [1, 12, 13, 15, 20]. In combination with increasing urgency to reduce nutrients and pesticides, a reconciliation of interests from food and energy production with those of environmental protection (e.g., soil and water) and sustainability is challenging.
Counter measures can significantly reduce surface runoff and erosion on slopy croplands. There is plenty of research on the efficiency of single measures, cultivation methods, or crops [e.g., 2, 4, 10, 14, 19]. However, we know little about combined effects of these factors and the influence of surface runoff on longer slope lengths [16]. Furthermore, changing climatic conditions and the necessary reduction of herbicides question well-accepted knowledge from the last decades. [2, 21].
The Bavarian State Research Center for Agriculture (LfL) constructs and establishes an experimental sight in Ruhstorf (Lower Bavaria, Germany) called EARL (erosion and runoff laboratory) to analyze the physical, social, and economical factors driving the ongoing erosion, which is exceptional world-wide. During long-term measurement campaigns, measures reducing erosion and improving the landscape’s water retention are assessed in combination with crop rotation schemes and new cultivation methods (i.e., crop selection, nutrient, pesticide, and herbicide management, cultivation methods, robotics, and precision farming). Drawing on other research groups’ experiences in the UK [5, 7-9], Switzerland [17, 18], Austria, and others [3, 6, 10, 11], ecologically promising and practically approved cultivation methods are assessed on their risk of erosion and resilience against weather extremes under controlled circumstances using an area of almost 4 ha. Each of 14 combined strip experiments (about 100 m x 6 m) is complemented with a smaller twin including an overhead sprinkling system to generate additional insights independent of the weather or simulating future climate conditions. The monitoring is focused on a very high data point density in three spatial and one temporal dimensions (4D‑approach) and includes precise topographical, meteorological, soil, and agricultural data as well as digital sensor networks applying IoT techniques. The datasets will be analyzed with artificial intelligence (AI) and deep learning (DL) approaches, as well as model-based to transfer the results to catchment scales.
The Chair of Hydrology and River Basin Management at TUM is a cooperation partner of this project. Together with the LfL, staff members design the concept of the measurements and plan and realize the installation on the plot. Supported by the TUM Institute of Measurement Systems and Sensor Technology, the plot will be fully operational from 2024 (after the initialization phase of three years) and deliver data for more than ten years. Besides, major objectives are establishing an international scientific network and collaborative projects on the one hand, and the transfer of the generated scientific knowledge to practical day-to-day work of farmers and authority staff by talks, workshops, conferences, and field trips.
Project website at ResearchGate
Homepage of the LfL in Ruhstorf
Funding: Bayerisches Staatsministerium für Ernährung, Landwirtschaft und Forsten
Project partners: Bayerische Landesanstalt für Landwirtschaft, Technische Universität München
Project start: 01.11.2021
Project end: 31.10.2024
Contact: Johannes Mitterer
Project website at the Bavarian State Research Center for Agriculture
Literature
[1] Auerswald, K., Fischer, F. K., Winterrath, T., Elhaus D., Maier H., Brandhuber R. (2019): Klimabedingte Veränderung der Regenerosivität seit 1960 und Konsequenzen für Bodenabtragsschätzungen. In: Bachmann G., König W., Utermann J. (Hrsg.) Bodenschutz, Ergänzbares Handbuch der Maßnahmen und Empfehlungen für Schutz, Pflege und Sanierung von Böden, Landschaft und Grundwasser (Loseblattsammlung), Berlin, Erich Schmidt Verlag.
[2] Auerswald K, Fischer FK, Kistler M, Treisch M, Maier H, Brandhuber R (2018): Behavior of farmers in regard to erosion by water as reflected by their farming practices. Science of the Total Environment 613–614: 1–9
[3] Auerswald, K., Fiener, P., and Dikau, R. (2009) Rates of sheet and rill erosion in Germany – A meta-analysis, Geomorphology, 111, 182–193, 2009.
[4] Brandhuber R, Treisch M, Fischer F, Kister M, Maier H, Auerswald K (2017) Starkregen, Bodenerosion, Sturzfluten - Beobachtungen und Analysen im Mai/Juni 2016. Bayerische Landesanstalt für Landwirtschaft, LfL-Schriftenreihe 2/2017
[5] Boardman, J. (2003) Soil erosion and flooding on the eastern South Downs, southern England, 1976-2001. Transactions Institute of British Geographers New Series, 28, 176–196.
[6] Evans R. (2013) Assessment and monitoring of accelerated water erosion of cultivated land – when will reality be acknowledged?. Soil Use and Management, March 2013, 29, 105–118.
[7] Evans, R. (2010) Land use and accelerated soil erosion by water in a small catchment on the South Downs, West Sussex, England – past and present. In: Landscapes through the Lens (eds D.C. Cowley, R.A. Standring & M.J. Abicht), pp. 129–142, Occasional Publication of the Aerial Archaeology Research Group No. 2, Oxbow Books, Oxford.
[8] Evans, R. (2006) Runoff, Soil Erosion and Sediment Sources in Central Norfolk, England. Final Report, AMEWAM Project, Hohenheim University, Stuttgart.
[9] Evans, R. & Boardman, J. (2003) Curtailment of muddy floods in the Sompting catchment, West Sussex, southern England. Soil Use and Management, 19, 223–231.
[10] Fiener P., Wilken F., Auerswald K (2019) Filling the gap between plot and landscape scale – eight years of soil erosion monitoring in 14 adjacent watersheds under soil conservation at Scheyern, Southern Germany. Advances in Geosciences., 48, 31–48, 2019.
[11] Fiener, P., Seibert, S. P., and Auerswald, K. (2011) A compilation and meta-analysis of rainfall simulation data on arable soils, J. Hydrol., 409, 395–406, 2011.
[12] Fischer F. K., Auerswald K, Maier H, Brandhuber R (2019) Erosionsschutz Bayern Radargestützte Erosionsprognose Teil I –Methodenentwicklung und Validierung der ABAG-. Bayerische Landesanstalt für Landwirtschaft, LfL-Schriftenreihe 3/2019
[13] IPCC-Report Chapert 4 (2019):Olsson, L., H. Barbosa, S. Bhadwal, A. Cowie, K. Delusca, D. Flores-Renteria, K. Hermans, E. Jobbagy, W. Kurz, D. Li, D.J. Sonwa, L. Stringer, 2019: Land Degradation. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes interrestrial ecosystems.[14] Kistler, M, Brandhuber, R, Maier, H, (2013): Wirksamkeit von Erosionsschutzmaßnahmen – Ergebnisse einer Feldstudie, LfL-Schriftenreihe 8/2013
[15] Munich Re (2017): Naturkatastrophen 2016 Analysen, Bewertungen, Positionen. TOPICS GEO 2017
[16] Prasuhn V, Doppler T, Spycher S, Stamm Ch (2018) Pflanzenschutzmitteleinträge durch Erosion und Abschwemmung reduzieren. Agrarforschung Schweiz 9 (2): 44–51, 2018
[17] Prasuhn, V. (2012) On-farm effects of tillage and crops on soil erosion measured over 10 years in Switzerland. Soil and Tillage Research, 120, 137–146.
[18] Prasuhn, V. (2011) Soil erosion in the Swiss midlands: results of a 10 year field survey. Geomorphology, 126, 32–41.
[19] Schwertmann U., Vogl W., Kainz M. (1990) Bodenerosion durch Wasser: Vorhersage des Abtrags und Bewertung von Gegenmaßnahmen, 2. Auflage. Ulmer: Stuttgart.
[20] Seibert S und Auerswald K (2019) Hochwasserminderung im ländlichen Raum - Förderung des Wasserrückhalts und Bremsen des Abflusses in der Flur mit quantitativen Planungsbeispielen. Vortrag am 25.11.2019 am „Erosionsgespräch 2019“ in Langquaid.
[21] TOPPS-Prowadis (2014). Gute fachliche Praxis zur Verringerung der Gewässerbelastung mit Pflanzenschutzmitteln durch Run-off und Erosion. Handbuch, 81 S., Zugang: www.topps-life.org/key-documents.html [22.01.2020].