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Groundwater Seepage

 Soil is composed by
» Rather stiff soil particles (gravel, sand, clay)
» Voids between particles filled with air
» Voids between particles filled with water

 If we have a different pressure on two sides of a 
soil there will be a movement of air and water 
through the soil



Hydraulic Head

 Energy expressed in height = Energy/(r·g)
» Potential Energy  h
» Pressure Energy p/g
» Kinetic Energy ½·v2/g
» Acceleration Energy (Stream height)

 For groundwater seepage only the first two terms 
are important:

H = h + p/g

 Thus for a water side of a 
dam we have a constant
hydraulic head



Remark

 The hydraulic or piezometric head can be 
observed in nature as water table in a bore hole:



Forces on Fluid Particles

 A pressure gradient causes forces on the fluid particles.
 In a free fluid the pressure gradient is in equilibrium 

with the weight of the fluid.
 In other cases we have resultant forces.
 Some forces are introduced by the surface tension of 

the fluid 
 If the fluid moves we have shear forces from the 

viscosity of the fluid at the walls. We have then a kind of 
tube flow.



Definitions / Terms

 There is the void ratio e defined as
ratio of void volume to solid volume
(deutsch: Porenzahl)

 And the porosity n defined as
ratio of void volume to total volume
(deutsch: Porenanteil)  
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Velocities

 We have two velocities
» A velocity describing the mass balance i.e. the quantity 

is velocity times sectional area = discharge velocity
(Filtergeschwindigkeit)

» A real velocity describing the travelling time of a fluid 
particle which is important for tracer experiments, the 
transport of contaminations and the size of water 
protection areas. (Abstandsgeschwindigkeit)

» The relation between those two values is depending on 
the porosity.

 If the soil is compacted we have to expect a 
strong influence on the velocities



Resistance

 For the small velocities and small diameters the 
Reynolds number is very small we may expect a 
laminar flow.



Darcy‘s Law

 The velocities are linear dependant on the gradient
 The permeability (conductivity) is a symmetric Tensor, 

i.e. it is transformed like a tensor
 Kezdi has defined a relation for the dependence of the 

permeability on the void ratio e

x xx xy xz

y yx yy yz

z zx zy zz

u k k k

u k k k grad H

u k k k

  
      
     

 

 

3
21 1

3

2 2 1

1 ek e

k e 1 e








Typical values for k



Nonlaminar flow

 For very small diameters the surface tension is to strong and we have no 
movement at all or a plastic flow according to Bingham‘s Law.

 Turbulent Flow according to Forchheimer

grad H = a·u + b·u2

 There are some theoretical estimates, typical values are according to 
Forchheimer

0.03 < a < 1.5   and  0.8 < b < 240



Important Hint

 If we calculate the forces on a dam we have either
» An impermeable cover of the dam
» A seepage through the dam

 In the first case we have the full water pressure on the cover

f grad p grad H grad zg g    

 In the second case we have instead (not additionally !) the 
gradient of the fluid pressure acting on the soil grains which 
is calculated from
– The gradient of the potential - the buoyancy effects



Tube and Channel flow

 Similar to a truss element in structural analysis we may 
include tubes and channels. The basic relation is for the 
loss of Potential dependant on the flow velocity u,
the hydraulic radius Rh and the
length L:

 For laminar flow Re<2320 we have

 For Re > 2320 we have the law from Prandtl-Colebrook
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Channel Flow

 The flow is subdivided for different hydraulic 
sections (river, coast etc.)



Storage coefficient

 The storage capacity is defined as the volume of fluid to be stored 
within a control volume if the pressure increases. We have four 
components in increasing order
» The compressibility of the soil itself
» The compressibility of the fluid itself
» The compressibility of the contained air
» The raise of the water table increasing the 

saturation (moisture content) of the soil
 For unconfined free surface flow the last term is dominant
 For the transition to a confined flow the numerics are quite 

difficult ! 
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Boundary Conditions

 Potential line H = H0

 Flow line vt··n = q
 Free Surface p = 0 and vt··n = 0
 Seepage surface p = 0 and vt··n > 0



Free Surface

 We have a boundary where the location is not known in advance
 If we restrict the integration of the functional only to the region 

limited by an assumed boundary we obtain the natural boundary 
condition

vt··n = 0

 Solution I - Adaptive meshes
The mesh is adopted to the flow to ensure p=0 at the boundary, 
which is a really difficult problem and not state of the art !

 Solution II - Selective Integration
Based on a given potential we restrict the integration of the 
functional only to the region with positive pressures, which is 
rather easy !



Example

 A homogeneous Dam



The free surface flow
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Flow quantities in elements



And some details
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Yeah, some problems

 It is better to reduce the permeability for the 
negative pressure by a factor of 0.00001 to avoid 
numerical problems and to get a reasonable value 
for H there to allow a better post processing

 When numerical integration is used, we should 
avoid a sudden deactivation by a weighted 
reduction factor:
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And a really severe problem

 If the free surface is very steep the numerics 
become strange

 Beside numerical damping only a partially 
saturated flow may be a solution



Seepage surface

 Apply the boundary condition H=z
 Control the fluid quantity in all nodes from the 

residual
 If we have an inflow, drop the boundary 

condition, but allow for a later reattachment
 The free surface can connect only at a distinct 

node into the seepage surface



The problem of a well

 The well has a pump with a given 
maximum quantity

 If the pump is strong enough the well 
becomes empty and the maximum flow is 
obtained with a complete seepage surface

 If the seepage surface becomes to small 
the quantity calculated from the potential 
difference can not be taken out

 If the pump is not strong enough the well 
fills partly with water until the inflow is 
equal to the outflow

 An iteration is always needed, where the 
integral flow from a set of nodes is used.



Dupuit Hypothesis

 For large models with rather small vertical dimensions 
it is possible to reduce the computational effort by the 
Dupuit assumption:

The potential is constant along the 
height of the aquifer. 

 The model is not necessarily flat, but it is rather 2D



Extended 2D QUAD element



Typical applications

 Large hydrological models to predict the ground 
water behaviour, tuned on measurements to 
predict changes in the water flow
» Global balance
» Level of Groundwater 
» Drink water protection
» Contaminations including diffusions

 Dams and barrages loaded by seepage
 Pits or constructions submerged in groundwater



Groundwater lowering 



Possible Questions

 How much water (How many pumps) has to be 
taken out to achieve a certain effect or what is the 
effect if we pump a certain quantity.

 Do we want to get to get the pit completely dry 
(not allowed in general)

 Or if we install a tight sole of the pit (e.g. HDI), 
what is the remaining pressure

 What is the effect on the pressures on the 
retaining walls



Mesh within pit

There are only few
constraints on the 
mesh



Possibilities / Problems
 We have to apply a fixed value of the potential at the outer 

boundaries. There are estimates how far we have to go, but the 
principle problem is that we have to assume a value somehow.

 For the interior of the pit we may treat the area as a seepage 
surface, if the hydraulic gradient is less than the weight of the soil 
(otherwise we have a hydraulic soil failure „Hydraulischer 
Grundbruch“)

 We may prescribe a water level in each well, which leads to a 
“well” defined problem

 Or we may prescribe a certain quantity at the wells and may have 
the problem that if the gradient is to large, the whole aquifer will 
become dry and the solution will collapse.

 In both cases we might need to iterate a little bit or use a special 
switching well-boundary condition



Piezometric Head



Piezometric Heads
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The well boundary condition

 Boundary Conditions:
WELL   1   0     21     21      0    210.000 [l/min] 
WELL   1   0     22     22      0    250.000 [l/min]
WELL   1   0     23     23      0    200.000 [l/min] 
WELL   1   0     24     24      0    230.000 [l/min]
WELL   1   0     25     25      0    300.000 [l/min]    

 Values after 30 Iterations:
WELL    1(     21) HEAD   54.134 M, CHARGE      215.454 [l/min]
WELL    1(     22) HEAD   49.687 M, CHARGE      246.362 [l/min]
WELL    1(     23) HEAD   53.169 M, CHARGE      197.987 [l/min]
WELL    1(     24) HEAD   48.616 M, CHARGE      225.870 [l/min]
WELL    1(     25) HEAD   47.613 M, CHARGE      302.152 [l/min] 



A 3D example



Cut along the valley



Cut across the valley



Problem of a 2D barrage

 Stability of a barrage with a height of 32,50 m and a
width of 21 m.

 Load cases to be considered:
» Seepage
» Temperature
» Ice pressure
» Earthquake

 On the water side there is an additional brickwork and
a so called „Intze-Keil“ to ensure water tightness

 Non linear material for rock and dam



Seepage through dam



Stresses including seepage
SOFiSTiK AG, 85764 Oberschleißheim, Bruckmannring 38, Tel:089/315-878-0WINGRAF (V13.71-21) 29.10.2004

Geometrie des Damms
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Transient Temperatures

Summer

Winter



Consolidation

 Clays will carry their load initially by an increase of the pore water 
pressure, the effective stress between the soil particles is reduced and 
they may loose their contact. The strength, especially the friction is 
reduced.

s’ = s – pu

 The pressure gradient will then create a seepage flow
 Reduction of pore water pressure will reactivate the strength of the soil
 The permeability will be reduced by the compression of the soil
 Thus

» Most critical state is immediately after loading
» Very complex problem, hardly analysed by FE-Methods and few 

Software is available



Pore Water Pressures



Multiphase Flow

 There are many problems with more than one liquid
» Oil / Water Mixtures
» Gas / Water Mixtures
» Unsaturated Soils

 If we have multiple fluids we may have also chemical 
reactions

 The best solution for those is to use a multiphysics 
software

 For unsaturated soils there are some possibilities 
within a classical seepage program however



Suction of Unsaturated Soils

 The surface tension will create a suction (negative pressure) 
allowing the water table to raise within small capillar tubes 
much higher than the free surface

 A dry soil has the negative capillar height as minimum 
pressure

 A wet soil has atmospheric pressure (p=0 at surface)
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Infiltration through Unsaturated Soil

 If the equilibrium between height and suction is 
not yet reached the fluid moves upward

 If the equilibrium is reached and we have an 
additional infiltration from above the gradient will 
become downwards throughout the structure.
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Pressure dependant Material

 Material is defined as a table of permeability and water 
content depending on the pore water pressure:

 The storage
coefficient S
is given by the 
derivative of the
water content
curve 

pu [kPa] rel. Perm
0,5 1000,000
1 998,000
2 905,000

2,5 692,000
3 383,000

3,5 156,000
4 58,170

4,5 23,610
5 11,090
6 3,587
7 1,633
10 0,402
20 0,066
40 0,019
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Problems
 The Element has a linear variation of the potential. 

So ist needs special provisions to model the bend 
in the potential distribution
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1D Testcase
 

X 

Y 

Z 

M 1 : 30 

0.00 0.50 1.00 1.50 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

3.50 

4.00 

0.800 

0.800 

0.801 

0.813 

1.03 

1.42 

1.82 

2.22 

2.62 

3.02 

0.00 0.50 1.00 1.50 

0.800 

0.400 

-0.399 

-0.787 

-0.966 

-0.978 

-0.976 

-0.976 

-0.976 

-0.976 

0.00 0.50 1.00 1.50 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

3.50 

4.00 

Structure Potential Pressure



Convergence

 Boundary Condition at upper edge: quantity
» No Problem

 Boundary Condition at upper edge: Potential
» Iteration behaviour is chaotic, small changes 

have strong effects. 
» The total set of tricks is needed to get 

convergence of the numerical procedure.



Transient saturation
increase of lower pressure
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Transient
increase of upper pressure
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Refined Transient 
increase of upper pressure
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3D Example
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test 3d instationaer

3D Beispiel

RANDBEDINGUNG STROEMUNG KLEINE FLAECHE

M 1 : 51
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Problem

 The point wise inflow creates a strong singularity in 3D
 As the FE-Mesh has only linear shape functions but 

averages the solution in an integral sense we get 
oscillations in our solution spoiling the non linear 
behaviour 

 

Expected Function 

FE - Interpolation 



Enhanced numerical approach
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test 3d instationaer

3D Beispiel

RANDBEDINGUNG STROEMUNG KLEINE FLAECHE
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Infiltration with larger area
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test 3d instationaer

RANDBEDINGUNG STROEMUNG GROSSE FLAECHE
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Conclusion

 Physics are rather complex
 Mathematics are rather simple
 There are a lot of numerical tools available
 However numerics are not simple
 Specialized Software has it‘s benefits
 Problems for many engineers to think in potential 

problems


