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FORM/SORM vs simulation and UQ 

methods

❑ FORM/SORM entail approximations that are affected by the degree of 

nonlinearity in the limit-state surface and the dimensionality of the problem.

❑ At the cost of large computational effort, simulation methods can estimate 

desired probabilities with specified accuracy.

❑ Accuracy of UQ methods depends on the accuracy of meta models and methods 

used for computing the failure probability.

❑ Simulation and UQ methods are primarily aimed at computing the failure 

probability.

❑ FORM/SORM provide additional valuable information:

▪ Most likely realization of random variables causing failure

▪ Relative importance of random variables

▪ Sensitivities with respect to parameters in probability distributions and the 

limit-state model

▪ Physical interpretation of the linearized system



Notation

Notation:

𝑡   time

𝑇 time interval

𝐗(𝑡)     vector of random processes

𝑔(𝐗(𝑡), 𝑡) limit-state function

ℱ = min
𝑡∈𝑇

𝑔 𝐗 𝑡 , 𝑡 ≤ 0  failure domain 



Types of problems

Encroaching problem:

𝑔 𝐗, 𝑡  

Failure occurs when the 

limit-state surface “encroaches”

onto the outcome point 𝐗 = 𝐱.

▪ Example: a structure with a capacity that deteriorates according to a 

deterministic rule.



Types of problems

Outcrossing problem:

𝑔[𝐗 𝑡 ] 

Failure occurs when the random

vector process 𝐗 𝑡  out-crosses the 

limit-state surface.

▪ Example: a structure under stochastic loads.



Types of problems

Encroaching-outcrossing problem:

𝑔[𝐗 𝑡 , 𝑡] 

Failure occurs when the random vector

process 𝐗 𝑡  out-crosses the encroaching 

limit-state surface.

▪ Example:  a structure under stochastic loads and a capacity that deteriorates 

according to a deterministic rule.

𝐱(𝑡)



Types of problems

Alternative way of formulating the problem:

𝑔[𝐗 𝑡 , 𝑡] is a scalar quantity for give 𝑡.

Failure occurs when 𝑔[𝐗 𝑡 , 𝑡] down-crosses the zero level during 𝑡 ∈ 𝑇.



Solutions for time-variant reliability

Upper-bound solution:

𝑁 𝑇 = Number of zero-level down-crossings of 𝑔 𝐗 𝑡 , 𝑡  in  𝑡 ∈ 𝑇

Pr min
𝑡∈𝑇

𝑔 𝐗 𝑡 , 𝑡 ≤ 0 = Pr 𝑔 𝐗 0 , 0 ≤ 0 ڂ 0 < 𝑁(𝑇)  

 ≤ Pr 𝑔 𝐗 0 , 0 ≤ 0 + Pr 0 < 𝑁(𝑇)

Pr 0 < 𝑁(𝑇) ≤ 𝑇׬
𝜈 𝑡 𝑑𝑡 

𝜈 𝑡 = mean rate of zero-level down-crossings of 𝑔 𝐗 𝑡 , 𝑡

▪ Pr min
𝑡∈𝑇

𝑔 𝐗 𝑡 , 𝑡 ≤ 0 ≤ Pr 𝑔 𝐗 0 , 0 ≤ 0 + 𝑇׬
𝜈 𝑡 𝑑𝑡 



Solutions for time-variant reliability

Upper-bound FORM solution:

𝜈(𝑡) = lim
Δ𝑡→0

Pr −𝑔 𝐗 𝑡 , 𝑡 ≤ 0 ∩ 𝑔 𝐗 𝑡 + Δ𝑡 , 𝑡 + Δ𝑡 ≤ 0

Δ𝑡

 ≅
Pr −𝑔 𝐗 𝑡 , 𝑡 ≤ 0 ∩ 𝑔 𝐗 𝑡 + ሶ𝐗 𝑡 Δ𝑡, 𝑡 + Δ𝑡 ≤ 0

Δ𝑡

 ≅
Φ2 −𝛽 𝑡 , −𝛽 𝑡 + Δ𝑡 , 𝜌 𝑡, Δ𝑡

Δ𝑡

𝛽 𝑡 = reliability index of problem {−𝑔 𝐗 𝑡 , 𝑡 ≤ 0}

𝛽 𝑡 + Δ𝑡 = reliability index of problem {𝑔 𝐗 𝑡 + ሶ𝐗 𝑡 Δ𝑡, 𝑡 + Δ𝑡 ≤ 0}

𝜌 𝑡, Δ𝑡 = ෝ𝛂 𝑡 ෝ𝛂 𝑡 + Δ𝑡 T 

For small Δ𝑡, 𝛽 𝑡 ≅ −𝛽 𝑡 + Δ𝑡  and −1 ≤ 𝜌 𝑡, Δ𝑡 :

▪ 𝜈 𝑡 ≅
1

Δ𝑡
exp

𝛽(𝑡)𝛽(𝑡+Δ𝑡)

2

1

4
+

sin−1[𝜌 𝑡,Δ𝑡 ]

2𝜋
 



Solutions for time-variant reliability

Poisson approximation:

Assume zero-level down-crossings are Poisson events (reasonable when these 
events are rare):

▪ Pr min
𝑡∈𝑇

𝑔 𝐗 𝑡 , 𝑡 ≤ 0 ≅ Pr 𝑔 𝐗 0 , 0 ≤ 0 + 1 − exp − 𝑇׬
𝜈 𝑡 d𝑡

▪ 𝑓𝑇1
𝑡 = 𝜈 𝑡 exp − 0׬

𝑡
𝜈 𝑡 d𝑡 ,  0 < 𝑡     PDF of time to failure



Solutions for time-variant reliability

Lower-bound solution as a series system:

 Pr min
𝑡∈𝑇

𝑔 𝐗 𝑡 , 𝑡 ≤ 0 ≥ Pr 𝑖=1ڂ
𝑛 𝑔 𝐗 𝑡𝑖 , 𝑡𝑖 ≤ 0

                                       ≅ 1 − Φ𝑛 𝐁, 𝐑   FORM approximation

Requires solutions at a large number of time points.



Stochastic dynamic problems

Discrete representation of input stochastic process:

❑ ෠𝐹 𝑡 = 𝜇𝐹 𝑡 + 𝐬 𝑡 𝐔,    𝐔 = N 𝟎, 𝐈

▪ 𝑠𝑖 𝑡 = 𝜎,  𝑡𝑖−1 < 𝑡 ≤ 𝑡𝑖

 = 𝜎 sincΔ𝑡(𝑡 − 𝑖Δ𝑡)  

▪ 𝑠𝑖 𝑡 = 𝜎𝑞(𝑡) 𝑡𝑖−1׬

𝑡𝑖 ℎ𝐹 𝑡 − 𝜏 d𝜏     modulated, filtered white noise

discrete white noise representation 



Response of linear system to 

Gaussian excitation

❑ 𝑋 𝑡 = 0׬

𝑡 ෠𝐹 𝜏 ℎ 𝑡 − 𝜏 d𝜏

 = 𝜇𝑋 𝑡 + 𝐚 𝑡 𝐔, 𝑎𝑖 𝑡 = 0׬

𝑡
𝑠𝑖 𝜏 ℎ 𝑡 − 𝜏 d𝜏 

❑ 𝐺 𝐔, 𝑥, 𝑡𝑥 = 𝑥 − 𝐚 𝑡𝑥 𝐔

▪ 𝐮∗ 𝑥, 𝑡𝑥 =
𝑥𝐚 𝑡𝑥

𝐚 𝑡𝑥
𝟐  design point

▪ መ𝑓∗ 𝑡 = 𝜇𝐹 𝑡 + 𝑥
𝐬 𝑡 𝐚 𝑡𝑥

T

𝐚 𝑡𝑥
2    design point excitation

▪ 𝑥∗ 𝑡 = 𝜇𝑋 𝑡 + 𝑥
𝐚 𝑡 𝐚 𝑡𝑥

T

𝐚 𝑡𝑥
2   design point response

▪ ෝ𝛂 𝑥, 𝑡𝑥 =
𝐚 𝑡𝑥

𝐚 𝑡𝑥
 unit normal vector,

▪ 𝛽 𝑥, 𝑡𝑥 =
𝑥

𝐚 𝑡𝑥
 reliability index

▪ Pr{𝜇𝑋 𝑡𝑥 + 𝑥 ≤ 𝑋 𝑡𝑥 } = Φ −𝛽 𝑥, 𝑡𝑥  tail probability

▪ 𝐚 𝑡𝑥 =
𝑥𝐮∗ 𝑥,𝑡𝑥

T

𝐮∗ 𝑥,𝑡𝑥
2    cornerstone relation for TELM

𝑢1

𝑢2

𝐮∗
𝑥 − 𝐚 𝑡𝑥 𝐮 = 0

𝐚(𝑡𝑥)



Response of nonlinear system to 

Gaussian excitation

❑ 𝐺 𝐔, 𝑥, 𝑡𝑥 = 𝑥 − 𝑋(𝑡𝑥, 𝐔)

Determine the design point 𝐮∗ by FORM 
analysis and compute the normal vector

𝐚 𝑡𝑥 =
𝑥𝐮∗ 𝑥, 𝑡𝑥

T

𝐮∗ 𝑥, 𝑡𝑥
2

This uniquely defines the Tail-Equivalent 
Linear System (TELS).

❑ 𝐚 𝑡𝑥  uniquely defines the unit Impulse Response Function of the linear system. 
The design point excitation closely resembles the mirror image of the IRF.

❑ Tail probability of TELS equals FORM approximation of the tail probability of 
the nonlinear system – Tail-Equivalent Linearization Method (TELM).

𝑢1

𝑢2

𝐮∗ 𝑥 − 𝑋(𝑡𝑥 , 𝐮) = 0

𝐚 𝑡𝑥

TELS



Properties of TELS/TELM

❑ Tail probability of TELS equals FORM approximation of the tail probability of 
the nonlinear system.

❑ TELM is a non-parametric linearization method – no parametrized linear model 
is needed; TELS is determined numerically in terms of its IRF.

❑ TELS critically depends on the assumed threshold 𝑥, thus capturing the non-
Gaussian distribution of the nonlinear response.

❑ For stationary response, analysis at a single time point is sufficient.

❑ TELS is independent of the scaling of the input excitation. For excitation 𝑐𝐹(𝑡), 
the reliability index is 𝛽(𝑥, 𝑡𝑥)/𝑐, where 𝛽(𝑥, 𝑡𝑥) is the reliability index for 𝐹(𝑡). 
This property greatly simplifies fragility analysis.

❑ For the TELS to exist, the loading history of the nonlinear system must be 
differentiable. (Bilinear elasto-plastic model will not work. Must work with 
smoothened models.) 



Example – Hysteretic oscillator subjected to 

band-limited white noise base excitation

❑ 𝑚 ሷ𝑋(𝑡) + 𝑐 ሶ𝑋(𝑡) + 𝑘[𝛼𝑋(𝑡) + (1 − 𝛼)𝑍(𝑡) = −𝑚𝐹(𝑡)

 ሶ𝑍 𝑡 = −𝛾 ሶ𝑋 𝑡 𝑍 𝑡 𝑛−1𝑍 𝑡 − 𝜂 𝑍 𝑡 𝑛 ሶ𝑋 𝑡 + 𝐴 ሶ𝑋 𝑡 , 

𝑚 = 300,000kg, 𝑐 = 150kNs/m, 𝑘 = 21,000kN/m, 𝛼 = 0.1, 𝑛 = 3, 𝐴 = 1, 

𝛾 = 𝜂 = 1 2𝜎0
𝑛 , 𝜎0

2 = 𝜋𝑆𝑚2/(𝑐𝑘) for 𝛼 = 1 case. 

IRF (left) and FRF (right) of the TELS for different thresholds



Example – Hysteretic oscillator subjected to 

band-limited white noise base excitation

❑ 𝑚 ሷ𝑋(𝑡) + 𝑐 ሶ𝑋(𝑡) + 𝑘[𝛼𝑋(𝑡) + (1 − 𝛼)𝑍(𝑡) = −𝑚𝐹(𝑡)

 ሶ𝑍 𝑡 = −𝛾 ሶ𝑋 𝑡 𝑍 𝑡 𝑛−1𝑍 𝑡 − 𝜂 𝑍 𝑡 𝑛 ሶ𝑋 𝑡 + 𝐴 ሶ𝑋 𝑡 , 

𝑚 = 300,000kg, 𝑐 = 150kNs/m, 𝑘 = 21,000kN/m, 𝛼 = 0.1, 𝑛 = 3, 𝐴 = 1, 

𝛾 = 𝜂 = 1 2𝜎0
𝑛 , 𝜎0

2 = 𝜋𝑆𝑚2/(𝑐𝑘) for 𝛼 = 1 case. 

Point-in-time complementary CDF (left) and PDF (right) of hysteretic response



Example – Hysteretic oscillator subjected to 

band-limited white noise base excitation

❑ 𝑚 ሷ𝑋(𝑡) + 𝑐 ሶ𝑋(𝑡) + 𝑘[𝛼𝑋(𝑡) + (1 − 𝛼)𝑍(𝑡) = −𝑚𝐹(𝑡)

 ሶ𝑍 𝑡 = −𝛾 ሶ𝑋 𝑡 𝑍 𝑡 𝑛−1𝑍 𝑡 − 𝜂 𝑍 𝑡 𝑛 ሶ𝑋 𝑡 + 𝐴 ሶ𝑋 𝑡 , 

𝑚 = 300,000kg, 𝑐 = 150kNs/m, 𝑘 = 21,000kN/m, 𝛼 = 0.1, 𝑛 = 3, 𝐴 = 1, 

𝛾 = 𝜂 = 1 2𝜎0
𝑛 , 𝜎0

2 = 𝜋𝑆𝑚2/(𝑐𝑘) for 𝛼 = 1 case. 

Fragility curve for tail probability at threshold 𝑥 = 3𝜎0



Example – Hysteretic oscillator subjected to 

band-limited white noise base excitation

❑ 𝑚 ሷ𝑋(𝑡) + 𝑐 ሶ𝑋(𝑡) + 𝑘[𝛼𝑋(𝑡) + (1 − 𝛼)𝑍(𝑡) = −𝑚𝐹(𝑡)

 ሶ𝑍 𝑡 = −𝛾 ሶ𝑋 𝑡 𝑍 𝑡 𝑛−1𝑍 𝑡 − 𝜂 𝑍 𝑡 𝑛 ሶ𝑋 𝑡 + 𝐴 ሶ𝑋 𝑡 , 

𝑚 = 300,000kg, 𝑐 = 150kNs/m, 𝑘 = 21,000kN/m, 𝛼 = 0.1, 𝑛 = 3, 𝐴 = 1, 

𝛾 = 𝜂 = 1 2𝜎0
𝑛 , 𝜎0

2 = 𝜋𝑆𝑚2/(𝑐𝑘) for 𝛼 = 1 case. 

Mean upcrossing rate



Example – Hysteretic oscillator subjected to 

band-limited white noise base excitation

❑ 𝑚 ሷ𝑋(𝑡) + 𝑐 ሶ𝑋(𝑡) + 𝑘[𝛼𝑋(𝑡) + (1 − 𝛼)𝑍(𝑡) = −𝑚𝐹(𝑡)

 ሶ𝑍 𝑡 = −𝛾 ሶ𝑋 𝑡 𝑍 𝑡 𝑛−1𝑍 𝑡 − 𝜂 𝑍 𝑡 𝑛 ሶ𝑋 𝑡 + 𝐴 ሶ𝑋 𝑡 , 

𝑚 = 300,000kg, 𝑐 = 150kNs/m, 𝑘 = 21,000kN/m, 𝛼 = 0.1, 𝑛 = 3, 𝐴 = 1, 

𝛾 = 𝜂 = 1 2𝜎0
𝑛 , 𝜎0

2 = 𝜋𝑆𝑚2/(𝑐𝑘) for 𝛼 = 1 case. 

Complementary CDF of maximum absolute response over 10s duration



The nature of errors in FORM

❑ No measure of the error inherent in FORM is available. 

❑ FORM tends to be more accurate for small probabilities (it is asymptotically 

exact as 𝛽 → ∞).

❑ Sources of error:

▪ Nonlinearity in the limit-state surface.

▪ Increasing dimension:

While the design point has the highest 

probability density in the failure domain, 

with increasing dimension the volume at 

farther distances rapidly grows and the 

neighborhood of the design point is no 

more the dominant contributor to the failure probability integral. 

𝑢1

𝑢2

𝐮∗ 𝐺(𝐮) = 0

ෝ𝛂



The nature of errors in FORM

❑ No measure of the error inherent in FORM is available. 

❑ FORM tends to be more accurate for small probabilities (it is asymptotically 

exact as 𝛽 → ∞).

❑ Sources of error:

▪ Nonlinearity in the limit-state surface.

▪ Increasing dimension:

However, in many high-dimension 

structural mechanics problems, the 

limit-state surface tends to be linear 

in many dimensions. 𝑢1

𝑢2

𝐮∗ 𝐺(𝐮) = 0

ෝ𝛂



The nature of errors in FORM

❑ No measure of the error inherent in FORM is available. 

❑ FORM tends to be more accurate for small probabilities (it is asymptotically 

exact as 𝛽 → ∞).

❑ Sources of error:

▪ Nonlinearity in the limit-state surface.

▪ Increasing dimension:

That is the case in FORM analysis

of nonlinear stochastic dynamics

problems, where the design point 

excitation is non-zero only near 

target time point of interest.    

Design point excitation



Concluding remarks

❑ FORM provides an alternative for time-variant reliability analysis with the 

possibility of providing rich insight into the nature of the problem through 

the design point, importance measures, sensitivities, the equivalent linear 

system, etc.

❑ TELM is a non-parametric linearization method that can approximately 

determine the non-Gaussian distribution of nonlinear response.

❑ Many challenges persist:  

▪ Need response gradients;

▪ Rapidly evolving nonstationary processes; 

▪ Non-differentiable hysteresis laws;

▪ Degrading systems;

▪ Effect of dimensionality;

▪ etc. 



Thank you!
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