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1. Background
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Vehicle loads

Earthquake 
ground motion

Corrosion

Multiple hazards: Typhoons, earthquakes, huge waves, wind-waves-currents…

Temporal and spatial uncertainty quantification, integrated risk modeling and 
function simulation of the structures?
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Randomness of Structural Loads and Disastrous Actions
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Sustained load Extraordinary load Wind, earthquakes or 
huge waves

t

Poisson process model to characterize loads or disastrous actions
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Engineering structureMultiple loading processes

How to describe the random 
coincidence of load processes 

Basic Problems

How to analyze the load 
combination effect of structures

Sustained 
load

Extraordi
nary load

Earthquake 
excitation

How to Simulate the Lifecycle Function of Structures?

Load combination effect
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2. Principle of Load Coincidence
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Linear superposition principle and load effect combination
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The traditional load combination can be categorized into two groups:

1. Intuition-based load combination method

2. Rational approximation (analytical) load combination method

Due to the existence of linear superposition principle, the load effect combination is
converted to load combination.
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Intuition-based load combination method 
Turkstra (1970) JCSS (1976)

Ferry Borges &
Castanheta (1971)

Rackwitz 
& Flessler (1978)

…

 Turkstra combination rule  FBC combination rule  JCSS combination rule
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To employ stationary binomial processes and give an intuitive judgment to
determine the maximum combination load. 9



Rational approximation (analytical) load combination method

Wen (1977) Larrabee &Cornell (1978)

Hasofer (1974) Gong & Zhao (2001)Gaver & Jacobs (1978) Mori et al. (2003) Pandey et al. (2021)

 Wen load combination method  Point crossing
su

pe
rp

os
ed

 ( ) ( ) ( ){ }max 1 1 2 2 12 12exp 1 1 1ZF T F x T F x T F xλ λ λ− −= − − − − − −          

Breitung & Rackwitz (1982)
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 Beyond crossing
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∂
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The classical research lacks the analysis on the Principle of Load Coincidence.

Taking the compound Poisson process as the load probability model, and introducing approximate
assumptions to provide analytical solutions for load combinations.
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Occurrence probability of random events

Statistical histogram          Probability density function

1. A single random variable
( )X ip x

Random sample

Discrete point sequence

Occurrence frequency

Deterministic sample

Continuous variable

Occurrence probability

Load combination: analysis of basic problems

provides a measure to the 
occurrence possibility of 
sample xi .

The probability of a 
sample value occuring in 
a certain interval of the 
histogram is actually 
equal to the frequency of 
the interval data. fre

qu
en

cy
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Coincidence of Random Events
2. Two random variables (Random coincidence of samples)：

( ),XY i ip x y

( ), d dXY i ip x y x y

Statistical histogram and Joint probability 
density function

provides a measure to the simultaneous
occurrence possibility of sample xi and yi

is a realization of coincidence for random
variables (X, Y)

is the probability of random variables
(X, Y) occurring at the interval of 1 1,

2 2i ix dx y dy ± ± 
 

(can be called as the coincidence
probability)

,i ix y
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Li, J. and D. Wang. On the principle of load combination of structures. Structural Safety, 2021, 89: 102046. 

Load Coincidence Principle

1Θ
2Θ

( )pΘ θ

 Coincidence problem of
two stochastic processes

1Θ

2Θ ( )1 2,θ θ

 Coincidence for two sets of 
basic random variables

t

t

( )
2 2 ,QY tθ

( )
1 1 ,QY tθ

( )1 2,=Θ Θ Θ

( )
1 1 ,QY tΘ ( )

2 2 ,QY tΘ

Coincidence of two 
stochastic process samples!

The subscript represents the 
process of belonging

( )1Q t ( )2Q tStochastic harmonic 
function expression of 
compound Poisson process

In the probability space forming by basic random variables ( ) ( )1 2, , p θΘ ΘΩ = Θ Θ provides a measure to the coincidence
possibility of samples . Thus, it also provides a measure to the coincidence possibility of two load processes,( )1 2,Θ = Θ Θ

( ) ( )
11 1 ,QQ t Y tθ= ( ) ( )

22 2 ,QQ t Y tθ=and 

Load Coincidence Principle: The coincidence probability (density) of random 
load samples is equal to the joint probability density at the realized sample.
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( ) seld , 1,2, ,
q

qP p q N
Ω

= = 
Θ

Θ θ θ

Coincidence Probability：

Probability Space Partition:

sel, 1,2, ,
q

q NΩ = Θ

——Number of subdomainsselN

——Realization of representative samplesqθ

Probability Space Partition and Load Coincidence Probability 

Partition subdomains:

Example for space partition of 
coincidence probability in two dimensions

Through probability space partition, the deterministic expression of random coincidence and the

coincidence probability can be achieved.

Li, J. and D. Wang. On the principle of load combination of structures. Structural Safety, 2021, 89: 102046. 
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Target: To compute the probability density function of the 
maximum combined load within a specified service life.

Maximum Combined Load of Multiple Loads
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Define the maximum of combined load for a specified service time in the probability
space
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Extreme probability distribution 

for a given time interval
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Extreme probability distribution of combined loads: Extreme distribution method
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Examples: Combination of sustained and extraordinary load

( ) ( ) ( )sus traZ t Q t Q t= +

Extreme distribution method: The distribution probability of 
extreme load is variant for different service years

1 1
sus tra0.1 year , 0.2 yearλ λ− −= =

Extreme probability density function Extreme probability distribution function
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Examples: Combination of sustained load and two extraordinary loads

F Z m
ax

(a
,T

)

( ) ( ) ( ) ( )sus tra,1 tra,2Z t Q t Q t Q t= + +

Probability density function of 
extreme value

Comparison of probability distribution function 
for combined extreme values

1 1 1
sus tra,1 tra,20.1 year , 0.2 year , 0.3 yearλ λ λ− − −= = =

2 2
sus sus0.306 kN m , 0.139 kN mμ α= =

2 2
tra,1 tra,10.246 kN m , 0.190 kN mμ α= =

2 2
tra,2 tra,20.244 kN m , 0.199 kN mμ α= =

Probability distribution function 
of extreme value

For different service life, the probability density function of the maximum 
combined load changes significantly.
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Examples: Combination of sustained load and earthquake excitation

( ) ( ) ( )susZ t Q t E t= +

Average occurrence rate of earthquake 1
e 0.002 yearλ −= Earthquake amplitude:

Extreme probability 
density function

Extreme probability 
distribution function

2 2
e e4.9 m s , 0.49 m sμ σ= =

Using the load coincidence principle, the extreme probability distribution of 

combined loads at a given service period can be quantitatively derived.

Extreme distribution method
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Linear 
coordinates

Load parameter 1

1-
F Z m

ax
(a

,T
)

1-
F Z m

ax
(a

,T
)

0 1 2 3 4 5 6
a

0

0.2

0.4

0.6

0.8

1

PDEM
TUR
FBC
WEN
PC
MCS

0 1 2 3 4 5 6
a

10-2

10-1

100

PDEM
TUR
FBC
WEN
PC
MCS

2.521.5Threshold

0.33320.70560.9694MCS

0.37%2.18%0.68%PDEM

15.04%28.25%21.96%TUR

3.17%3.82%0.70%FBC

12.87%14.81%2.64%WEN

12.86%14.76%2.62%PC

432Threshold

0.09580.30040.7042MCS

0.3%3.55%1.63%PDEM

3.62%10.36%17.22%TUR

0.06%0.21%2.21%FBC

29.17%52.24%29.27%WEN

29.14%52.12%29.25%PC

321Threshold

0.09170.29150.6863MCS

1.31%0.41%1.67%PDEM

2.08%6.35%10.49%TUR

3.56%10.51%16.7%FBC

8.5%19.2%17.7%WEN

8.39%18.4%15.56%PC

Comparison of different load combination methods

Logarithm
ic  

coordinates

Load parameter 2 Load parameter 3

Compared with the MC method, the error of the recommended method is less than 4%, while other
classical methods have an error up to 17%-52%. 20



3. Combination of Structural Load Effects

Nonlinear structural analysis
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Propagation of randomness in physical systems!
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The initial random source The probability 
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The physical system

Li Jie, 2005. Some basic viewpoints on research of physical stochastic systems. Scientific 

Report in Tongji University.

Probability Density Evolution Theory

22



On the random event description, the principle can be described as: the probability
measure will be preserved in a set of sample trajectories, as long as neither new
random factors arise nor existing factors vanish in the physical process.

Principle of preservation of probability

{ } { }Pr ( ( ), ) Pr ( ( ), )t dt tt dt tθ θ++ ∈Ω ×Ω = ∈Ω ×ΩX XQ Q
Jie Li & Jian-Bing Chen, 2008, “The Principle of Preservation of Probability and the Generalized Density Evolution Equation ”,
Structural Safety, 30(1), 65-77
Jie Li & Jian-Bing Chen, “Stochastic Dynamics of Structures”, John Willey, 2009. 23



Without loss of generality, consider a general stochastic physical system

where     is a random vector,            is a general operator. 

If we regard     as an evolution parameter like time, then the joint PDF of is 
governed by the following probability density evolution equation

t

Generalized Probability Density Evolution Equation (PDEE)

Jie Li. 2016, Probability density evolution method: Background, significance and recent developments. Probabilistic
Engineering Mechanics, 44: 111-117. 24



Example: Elasto-plastic stochastic dynamical system

Combining dynamic equilibrium equation, geometric equation, constitutive equation
and generalized probability density evolution equation, stochastic nonlinear response
analysis of complex structures can be easily implemented.

Physical Equation of Structures

Probability Density Evolution Equation

Equilibrium equation
Geometric equation

Constitutive equation

25



Three kind of 
loads

Sustained load

Extraordinary load

t

Earthquake excitation

t

t

Generalized expression of nonlinear load effects of structures

( ) ( ) ( ) ( ) ( )
1 2 30 1 2 3 ,, , , , , ,S Q Q Q S tS t f Q Y t Y t Y t = = Θ Θ ΘΘ ( )
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2

p
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ρ η

− −

∇ ⋅ + = +
 = ∇ + ∇

 = I D C

σ b u u

ε u u

σ ε ε

 

Load effect combination of nonlinear structure
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Probability density function of combined load effects:

( , ) ( , , )dS Sp s t p s t
Ω

=  θθ
Θ

Θ

( ) ( ) [ ]{ }
max

, , 0,SF a T P S t a t T= ≤ ∀ ∈

Probability distribution of extreme value for combined load effects:

Probability density evolution analysis
Basic Analytical Equations

( ),S tΘ

27



( ) ( )
( ) ( ) ( )

[ ] ( ) ( )
( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

0

0 end 0 end

0

end

0 end

, ,
, , , , , ,

, , 0

, , , , ,

, , , , ,

, , , , , , ,

, , , ,  , , ,

l l

S

S S

Q l Q l

S S

S S S

S t f
p s t p s t

S t
s

Y Y

p s t p s t

p s t p s t p s t

S t S t S t S t

t t

τ τ τ
τ τ

τ
τ

τ τ τ τ τ

τ

τ

τ τ

−

+

+

− +

−

 = −
 ∂ ∂ + = ∂ ∂


∈ = =

 =

 = =

 = =

Θ Θ

Θ Θ

Θ Θ Θ

Θ

Θ Θ

Θ Θ Θ Θ

θ θ
θ

θ θ

θ θ θ

1. Gravity load time history

Probability density evolution analysis
Being a Discrete Events Dynamic System, it requires to solve physical equations and probability
density evolution equation in segments based on the change of system states. Herein, the
introduction of multiscale time variables have to be introduced.

At time point t, the change of combined load effect is
induced for the moment of loading and unloading.
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2. Earthquake ground motion

Earthquake happened 0τ Starting time of seismic ground motion

endτ Ending time of seismic ground motion

( ) ( ), , , dS Sp s t p s t
Ω

= 
Θ

Θ θ θ

Probability density function of combined load effects
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Examples: Combined load effect analysis of structures

1
tr

1
sus a0.1 year , 0.2 yearλ λ −− ==

8-story reinforced concrete frame structure, with a total height of 26.7 m and a plan size of 39.6 m
× 15 m. Describe the floor sustained and extraordinary load using the Poisson square wave process
and Poisson point process, respectively, and calculate the probability distribution of load
combination effects. 30



Examples：Instantaneous probability distribution of bending moment at critical
sections under the combined action of gravity load

(1-b) (1-e)

(7-b) (7-e)

The probability density function of sectional bending moment changes with service life!31



Service period at 100 years

Probability density function of the maximum bending moment at a typical section

Service period at 50 yearsService period at 10 years

The probability distribution of the maximum sectional bending moment has 
significant difference for the linear and nonlinear load combinations.

Comparison of linear and nonlinear load combination effects
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4. Global Reliability Analysis of Structures     

under Multi-loads and Disastrous Actions
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Global Reliability of Structures

Physical Equation

Propagation Equation

Physical failure criteria

Li J. Advances in global reliability analysis of engineering structures. China Civil Engineering Journal, 51(8): 1-10. 2018

Structural Global Reliability Analysis: Physical synthesis method

Screening operator
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Global structural failure

Elements failure Elements failure

Materials failure

Structural global failure:
Collapse criterion

Materials failure

Structural global reliability analysis: Physical synthesis method

Element failure:
Sectional strength criterion

Material failure:
Stress strength criterion
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Sustained load

Extraordinary load

Earthquake

 Typical load sample q=133

Structural response

1 1 1
sus tra E0.1year , 0.2 year 0.002 yearλ λ λ− − −= = =，

2 2
sus sus0.504kN m , 0.162kN mμ σ= =

2 2
tra,1 tra0.468kN m , 0.253kN mμ σ= =

2 2
E E0.433m , 0.598ms sμ σ= =

Example: Sample analysis (Multiple live loads + Earthquake)

Structural damage distribution

The simulation of life-cycle performance of the structure!
36



P S(T
)

Repairable probabilityService years
0.983110
0.969120
0.957830
0.942440
0.932450
0.918660
0.904270
0.886980
0.876990
0.8667100

Example: Structural Reliability (Element failure criterion)

Change of structural repairable 
probability with the service year

The repairable probability for structures for different service years under combinations of live loads
and earthquake ground motions.

As the structural service year increases, the probability of structures encountering earthquakes
increases, and the repairable probability decreases.

1 1 1
sus tra E0.1 year , 0.2 year 0.002 yearλ λ λ− − −= = =，

2 2
sus sus0.504 kN m , 0.162 kN mμ σ= =

2 2
tra,1 tra0.468 kN m , 0.253 kN mμ σ= =

2 2
E E0.433 m , 0.598 ms sμ σ= =
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Non-collapse probability
Service years Threshold value  

0.05
Threshold value  

0.02
0.99950.999510
0.99870.998720
0.99820.998230
0.99820.998240
0.99650.996550
0.99650.995660
0.99580.994970
0.99580.994980
0.99350.992690
0.99350.9926100

Structural non-collapse probability
（Criterion: The inter-storey drift ratio at any floor 

reaches at 0.05）

 Structural collapse probability increases with the extension of service years
 As the structural service year extends, the impact of live loads on the structural seismic reliability

becomes increasingly apparent.

Example: Structural Global Reliability （Global failure criterion）

The non-collapse probability for structures at different service years under combinations of gravity
loads and earthquake ground motions.

38



5. Typical Engineering Applications
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1. Railway bridge (railway loads and earthquakes)

Qingshuihe bridge on the Nan-kun
Railway Line of China. A heavy load
railway concrete bridge. The total
length of the bridge is 360.5 m, with
a height of 183 m from the riverbed
to the bridge deck. The main span is
272 meters (72+128+72), and the
main pier has heights of 86 meters
and 100 meters, respectively. The
concrete grade is C50, and the design
life is 100 years.

40



Combination of railway loads and earthquakes

Combination sample 1

Combination sample 4Combination sample 3

Combination sample 2

The compound Poisson process is adoped to simulate railway loads and earthquakes,
and the probability partition method is employed to determine the load coincidence
sample.

Railway load Earthquake 41



Probability density evolution of displacement at the middle span

Time-varying reliability under combination of railway loads and earthquakes 42



Structural global reliability under different load combinations

If considering railway loading only, the structural reliability begins to decline when the service
life approaches 100 years. However, if considering the combined railway loads and earthquakes
simultaneously, the structural reliability will decrease at the beginning of its service life. The
structural failure probability is as high as 55% when the service life reaches 100 years!

Railway load
Earthquake
Railway load+Earthquake

Railway loading + EarthquakeRailway loading服役期（年）

0.93511.000020

0.82951.000040

0.64641.000060

0.51981.000080

0.46460.9971100

0.37610.9561120

0.31720.8522140

0.04090.0929160
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2. Cooling Tower of Power plant (Typhoon and earthquakes)



The cooling tower has a total height of 249 meters, with the shell
portion being 220 meters high and the bottom inlet height being 29
meters. The shell has a top diameter of 118 meters, a bottom diameter
of 186 meters, and a throat diameter of 113 meters. The thickness of
the shell gradually decreases from bottom to top, with the thickest part
being 1.8 meters and the thinnest part being 0.42 meters. The bottom
cross-braces are 30.8 meters long, with a rectangular cross-section
measuring 1.0m x 1.7m, totaling 132 braces.

In the finite element model (as shown in the diagram), the cross-
braces are modeled using fiber beam elements, and the shell is
modeled using layered shell elements. The entire structure is divided
into 23,528 elements.

Nonlinear wind-induced vibration response analysis is conducted
using the concrete elastoplastic stochastic damage model established
by our team. The analysis of stochastic wind-induced vibration
response adopts the ensemble evolutionary algorithm.
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Simulation of typhoon and earthquakes sequence
The compound Poisson process is employed to simulate typhoon and earthquakes, and
the probability partition method is adopted to determine the load coincidence sample.
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After experienced 16 typhoon and 1 earthquake (the 30th year, with a 
peak ground acceleration of 2.6 m/s^2), the structure still stand up to 
two more consecutive typhoon events with peak wind speeds of 48.64 
m/s and 38.26 m/s, respectively, finally resulting in structural collapses. 
(The structural collapse occurred in the 32nd year).

The timing and intensity of the 
typhoon at the collapse moment

100s

250s

140s 180s 230s

270s 290s 320s

Structural Collapse under the Sequence Action of Typhoon and Earthquakes
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Sequential action of typhoon
and earthquake

Typhoon 
acting alone

1.00001.00000 Year 
1.00001.00005 Year 
1.00001.000010 Year
1.00001.000015 Year
0.99630.996120 Year
0.98160.992025 Year
0.96610.987930 Year
0.92370.977435 Year
0.91830.976040 Year
0.91700.975145 Year
0.91660.974150 Year

Action
Service life

Strctural reliability for different service life

For 50 years design service life, if considering typhoon only, the structural reliability is about
97%. However, if considering the sequence action of typhoon and earthquakes, the structural
reliability will decrease to 92% ! 48



Conclusions

 The simulation of lifecycle performance of structures is a basic foundation
to analysis lifecycle reliability of engineering structures;

 The principle of structural load coincidence has laid a scientific
foundation to solve the structural load effect combination problem;

 There is a significant difference between the combination of linear and
nonlinear load effects, which should be given a special attention;

 Probability density evolution theory could reveal the uncertainty
propagation law of engineering systems. It established a scientific
fundation for the study of the combined effects of multiple loads and
disaster dynamic effects, as well as the reliability design of structures.
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1900’s

First 
Generation 1960’s

Second 
Generation 2020’s

Third 
Generation

Uncertainty 
quantification

Mechanical 
analysisElasticity 

theory

Empirical safety 
factor

Nonlinear material 
mechanics

Approximate 
probability criterion

Solid 
mechanics

Accurate probability 
criterion

Jie Li, 2017, “On the Third Generation of Structural Design Theory”, Journal of Tongji University (Natural
Science), 45(5), pp.617-624,632 50



Thanks for your attention!
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