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Structural Safety in the Changing Climate

A rapid pace of climate change is evident by increasing frequency and
intensity of weather extremes

Record breaking heat waves, wildfires, rain/snow storms, and hurricanes in
many parts of the world.

Increasing severity of weather extremes is threatening the safety and
functionality of existing infrastructure systems

Transportation systems, electrical networks, and water infrastructure suffer
damaged and disrupted

Design codes and standards must adapt to changing climate to maintain
a high level of safety

Design in the Changing Climate
New models and methods are needed to account for climate change effects in
the design of infrastructure systems
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Design and Time-Variant Reliability Analysis

General Idea
A structure is expected to face a sequence of loads of uncertain
magnitude, arriving randomly over the service life, (0, t)
The structure must withstand all such loads while ensuring the safety of
occupants (many limit states of performance)
A sequence of uncertain load events can be naturally modelled as a
stochastic Point Process

A Practical Approach
The time-variant stochastic analysis can be replaced by a time-invariant
analysis
The concept of ”extreme value distribution” plays a key role
A structure is safe over its lifetime, if it can withstand the maximum of all
load events that could occur over its lifetime
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Reliability Analysis: Definition

Key Elements
A structure of uncertain strength, R, is exposed to a stochastic load process
over a time interval, (s, t ] ,

The distribution of maximum load, Xmax (s, t), generated by the process
over the interval , (s, t ]
Computation of the probability of failure, Pf (s, t)

Pf (s, t) = P [R − Xmax (s, t) ≤ 0] (1)

How to derive the distribution of maximum load under non-stationary
conditions?
Other items of interest

Calibration of load and resistance factors
Target reliability considerations
Degradation of structural strength
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A Stochastic Load Model

Shock Process (Marked Point Process)

0 t

X1

X2

Xn−1

Xn

S1 S2 Sn−1 Sn

T1 T2 Tn

Random components of the model: (T ,X ) vectors of RV
Inter-arrival times, T1,T2, . . .
Load magnitudes, X1,X2, . . .
Time-dependent frequency (rate)
Time-dependent loads
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Return Period: Definitions

”Return period” is a widely used term in design codes

(1) Inter-Arrival Time

Timet0 S1 S2 Sn−1 Sn

T1 T2 Tn

Average time between two consecutive events
There are multiple return periods: E [T1] ,E [T2] , . . . ,E [Tn]

(2) Waiting Time to Next Event

Timet0 S1 S2 Sn Sn+1

W (t)

Mean waiting time to next event at time t = E [W (t)]
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Stationary Climate: Basis of Current Design

Current design codes are based on the stationary climate conditions
Homogeneous Poisson Process (HPP)

A common model of climate loads in structural reliability
The load occurrence rate, a constant (λ)
Inter-arrival times, T1,T2, . . ., IID exponential RVs
Load magnitudes, X1,X2, . . . , IID with a common DF

Return Period in Stationary Climate
Average inter-arrival times are all EQUAL, E [Tn] =

1
λ

, ∀ n > 0
There is a SINGLE return period → convenient in design

Extreme Load Distribution

P [Xmax (t) ≤ x ] = e−λt(1−FX (x))

It depends on the length of the interval only (owing to stationary process)
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Stationary Reliability Analysis

Annual extreme load distribution from HPP model

P [XAmax ≤ x ] = e−λ(1−FX (x))

Asymptotic extreme value distributions are also used (Gumbel distribution)

Annual probability of failure is the same for every year in the service life

PfA = P [R − XAmax ≤ 0]

Annual probability of failure is kept below a target level (by code
calibration)

Time-Invariance
All reliability measures are time-invariant in the stationary climate
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Non-Stationary Climate

The climate change is causing temporal variations in the frequency and
intensity of weather extremes
Sustained global warming over a long period of time is likely to introduce
some dependence among weather extremes
Increasing concentration of greenhouse gases with time will continue to
amplify non-stationary effects
Non-stationary processes are required to model such temporal
changes in the climate variables

Key Points
Stationary load processes will not be valid in the changing climate
All reliability measures will become time-variant quantities
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Research Approach

Non-stationary reliability analysis to model climate change effects

Scope of research

1 Analytical developments in stochastic analysis
2 Statistical estimation of model parameters
3 Numerical parametric study
4 Practical data analysis and modelling
5 Design code development issues

Pandey Reliability Analysis in the Changing Climate JCSS, 2024 10 / 32



Non-Stationary Point Processes

Load Arrivals
1 Non-Homogeneous Poisson process (NHPP)

A natural extension of the homogeneous Poisson process
The occurrence rate is time dependent, λ(t)
Arrival times (T1,T2, . . .) are dependent RVs
”Independence” property still holds

Number of events in an interval are independent of any other disjoint interval
This property is also a limitation of the model

2 Non-Homogeneous Birth Process
Includes all NHPP properties, but ”Independence” property relaxed
Number of events in an interval depends on the history of the process

Load Magnitudes
A function of the time of load arrival

X (sk ) = φ1(sk ) + φ2(sk )Xk

φ1(sk ), φ2(sk ) are time-dependent amplification functions
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Non-Homogeneous Poisson Process

Fully analytically tractable model
The probability distribution of the number of events, N(s, t), s < t ,

fN(k ; s, t) =
(Λ(s, t))k

k !
e−Λ(s,t), (0 ≤ k <∞) (2)

NHPP is defined by the Mean Value Function, Λ(s, t) = E [N(s, t)].

The occurrence rate (or frequency), λ(t) = dΛ(t)
dt

If the rate is increasing, inter-arrival times periods will be decreasing,
and E [Tn] < · · · < E [T2] < E [T1]

Analytical results were derived for all necessary quantities required for
structural reliability analysis

Return period, mean waiting time
Extreme value distribution with time-dependent loads

Pandey, M.D., and Lounis, Z. (2023). Stochastic modelling of non-stationary environmental loads for reliability

analysis under the changing climate. Structural Safety, 103, 102348, pp.1-11.
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NHPP Model: Some Results

Distribution of inter-arrival time, Tn (complementary CDF)

F Tn (t) =

∫ ∞
0

fT1 (t + u)
[Λ(u)]n−1

(n − 1)!
du

The mean inter-arrival time or nth return period

E [Tn] =

∫ ∞
0

F T1 (s)
[Λ(s)]n−1

(n − 1)!
ds, (n ≥ 1)

The return period is no longer a constant, rather it changes with n
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Non-Stationary Reliability Analysis

The extreme load distribution in a time interval, (t1, t2], t1 < t2:

Fmax (x , t1, t2) = e−Λ(x,t1,t2)

where the mean value function is given as,

Λ(x , t1, t2) =

∫ t2

t1
F X (ψ(x , s))λ(s)ds, and ψ(x , s) =

x − φ1(s)

φ2(s)

Probability of failure in a time interval

Pf (t1, t2) = P [R − Xmax (t1, t2) ≤ 0]

Computation using FORM or simulations

Non-Stationary Climate
Time-invariance property of all the reliability measures is lost
All the measures must be defined with reference to a time interval
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Non-Homogeneous Birth Process

Conditional Intensity
Conditional probability of an event given the history of the process,
λC(n, t)

P [N(t + dt)− N(t) = 1|N(t) = n] = λC(n, t)dt + o(dt),

Form of intensity function, λC(n, t) = h(n)λ(t)
Includes dependence on the number of past events (n)
Also depends on the time (t) elapsed since the start of the process

Various types of birth processes depending on the cond. intensity
Homogeneous form, λ(t) = λ
Yule process, Generalized Polya process, ...
NHPP is a special case, λC(n, t) = λ(t)

Analytical solutions
Homogeneous birth process - all analytical solutions have been derived
Non-homogeneous case - analyzed for a linear form of intensity function
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Linear Extension of the Yule Process (LEYP)

Conditional intensity

λC(n, t) = (an + b)︸ ︷︷ ︸
past history

× λ(t)︸︷︷︸
time elapsed

, (a ≥ 0,b > 0)

History dependence: A linear form, h(n) = (a n + b)
Temporal effect: A time-dependent rate, λ(t)
Parameter, b = 1, fixed to ensure the model identification
Scale parameter, a, controls the influence of the process history

Negative binomial distribution for the number of events

P [Nt = n] =
Γ (α + n)

Γ(n + 1)Γ (α)
(βt )

α (1− βt )
n

Pandey, M.D., and Mercier, S. (2024). Stochastic Modelling of Non-Stationary and Dependent Weather

Extremes for Structural Reliability Analysis in the Changing Climate. Structural Safety (under review)
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General Non-Stationary Load Model

LEYP Shock Process

0

Load

TimetS1

Xc1(S1)

S2

Xc2(S2)

Sn−1 Sn

Xcn(Sn)

T1 T2 Tn

x

Non-stationary components
Frequency of occurrence of load events
Dependence on the number of events occurring over time
Intensity (magnitude) of loads are also time-dependent

Analysis Results
Expressions for any nth return period, mean waiting time to the next event
Correlation coefficient between the number of events in two intervals
(dependence measure)
Distribution of maximum loads in (s, t ]
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Reliability Analysis

Time-dependent loads, X (sk ) = φ1(sk ) + φ2(sk )Xk

Distribution of maximum load in a given time interval

Fmax (x , t1, t2) =
[
1 +

µ12

α
− aq∗(x , t1, t2)

]−α
where q∗(x, t1, t2) =

∫ t2

t1

λ(s)

βs
FX (ψ(x, s))ds

with ψ(x, s) =
x − φ1(s)

φ2(s)
, βs = e−aΛ(s)

, and Λ(s) =

∫ s

0
λ(u) du

Probability of failure in a given time interval

Pf (t1, t2) = P [R − Xmax (t1, t2) ≤ 0] =

∫ ∞
0

F max (x , t1, t2)fR(x)dx
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Inter-Arrival Times

nth return period, Tn = Sn − Sn−1,n > 1,S0 = 0
CCDF of Tn:

F Tn (u) =
a

B
( b

a ,n − 1
) × ∫ ∞

0
λ (s) e−g(u,s)

(
1− e−aΛ(s)

)n−2
ds

where
g(u, s) = a (n − 1) Λ (s, u + s) + bΛ (u + s)

An nth return period by integration: E [Tn] =
∫∞

0 F Tn (u)du

Variable Return Periods!
In a non-stationary process, E [T1] ,E [T2] , . . . ,E [Tn], are all DISTINCT values
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A Measure of Dependence

Correlation coefficient
Between the number of events in two adjacent intervals, (t1, t2] and (t2, t3]
with 0 ≤ t1 < t2 < t3
Definition

ρ[N12,N23] =
COV [N12,N23]

σ12 σ23

A general expression

[ρ (N12,N23)]2 =

(
µ12

α + µ12

)(
µ23

α + µ23

)
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Numerical Examples

Linear Rate Function

2020 2040 2060 2080 2100

λo

Base case: Stationary climate

kλo

t

λ(t)

Year

O
c
c
u
rr
e
n
c
e
R
a
te

,
λ
(t
)

The reference period for the
analysis is 2020 - 2100,
(te = 80 years)
The base case is the
stationary climate with a rate,
λo = 1 event/year
An overall, linear increase in
the occurrence rate is kλo
over te years

Climate Amplification Factors
Increase as a multiple of the base case (stationary climate)
Increase in the frequency: k = kF
Increase in the load magnitude: kL

Pandey Reliability Analysis in the Changing Climate JCSS, 2024 21 / 32



Parametric Study

Investigation of the effect of various model parameters
Correlation coefficient (dependence)
Expected number of events
Return periods
Mean waiting time
Probability of Failure

Model parameters
Scale parameter of the history function
Base rate
Liner increase in the rate and load magnitude
Amplification factors for the rate and the load

Parameter Notation Values
Scale a 0.1 - 1
Base rate λ0 0.02 - 1
Amplification Factors - -
Frequency (rate) kF 1 - 4
Load kL 1 - 1.4
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Dependence in LEYP

Correlation
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a = 1

a = 0.5

a = 0.25

The decadal correlation
coefficient between the
number of events (t ± 10)
Results for homogeneous
birth process
A constant rate, λ = 0.02/year

Corre. coeff. increases continuously as time increases from 10 - 80 years
The rate and the magnitude of this increase are controlled by ”a”
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Example: Inter-Arrival Times

a=0.5 a=1.0

The first 6 return periods (RPs) are plotted
A dramatic decrease in subsequent RPs of extreme events
Frequency amplification and the scale (a) parameter have
significant influence on the inter-arrival times
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Mean Waiting Time to the Next Event

Mean waiting time decreases
with the passage of time
Results are shown for a = 0.5
Mean waiting time decreases
with an increase in the
frequency amplification

The mean waiting time (MWT) is a more useful measure than mean
inter-arrival time
MWT does not require any information about the history of the process
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Probability of Failure: Increasing Frequency
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kF = 2

kF = 1.5

kF = 1

Cumulative probability of
failure in Pf (0, t)
Scale, a = 0.5, λ0 = 0.1
50 to 100% increase in
frequency over 50 years
Time-invariant load

The impact of frequency amplification on the probability of failure
An order of increase in kF has a modest effect on Pf (0, t)
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Probability of Failure: Increasing Intensity
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kL = 1.4

kL = 1.2

kL = 1

Cumulative probability of
failure in Pf (0, t)
Scale, a = 0.5, λ0 = 0.1
Frequency amplification,
kF = 1.5, fixed
load intensity increase 20 to
40% over 50 years

The impact of load amplification on the probability of failure
A modest increase in kL has a significant effect on Pf (0, t)
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Application: Extreme Precipitation in Future
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Future climate forecast by the
Canadian Earth System
Model (5.03)
Simulation data for heavy
precipitation events (> 35
mm/day)
Scenario: SSP 5-8.5
(Fossil-fuelled Development)
Expected increase of 4.4◦C in
the the mean global
temperature by 2100

Data for a spatial grid-box of of 6× 10 km2 size in Toronto, Ontario
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Precipitation Data: LEYP Model
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Dependence effect

Temporal effect

Base rate

Expected number of events in
(0, t)
Base rate λ0 = 0.91
Frequency amplification,
kF = 1.55
Intensity amplification is
absent, kL = 1

Three stochastic effects are present
1 A stationary rate, λo = 0.91, implies 73 events expected in 80 years
2 Frequency amplification by 55% over 80 years increases to 92 events
3 Dependence effect increasing this to 132 events

Modest dependence, decadal corre. coeff. increases from 0.07 to 0.17
In spite of this, dependence has a discernible effect
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Conclusions

Non-stationary stochastic load models are developed for structural
reliability analysis in the changing climate

NHPP and LEYP models are analysed in detail
The ”order statistics property” is a key to derive analytical results

Analytical results are derived for various elements of reliability analysis
framework
The LEYP model overcomes a major limitation of the classical Poisson
process by including the statistical dependence among extreme events

Even a mild dependence can lead to a significant increase in the frequency
of extremes and the probability of failure

Path forward
Code calibration in non-stationary climate
Target reliability considerations
Degradation of structural strength
Stochastic load combination rules
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Q & A

Thank you for your attention!
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Non-Stationary Modelling: Current Approach

In the literature, very limited use of non-stationary stochastic processes
for modelling the climate change effects
The Gumbel (or GEV) distribution with time dependent parameters is the
state-of-the-art
Parameter estimation using annual maxima data obtained through
climate simulation models
Using this, the annual probability of failure is computed
The annual maxima distribution (and probability of failure) in a given year
is assumed to be ”Independent” of all other years
This ”Independence” implies that extremes are generated by an NHPP
The current approach is quite restrictive

It does not allow to investigate other aspects of the problem (inter-arrival
times, dependence, intensity and frequency amplification)
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