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Problem Characterization

STOCHASTIC STRUCTURAL DYNAMICS

Uncertainties: Aleatory and Epistemic
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Challenges

e appropriate model for spatial and temporal random quantities
mm) physics-based covariance model

e effective quantification of vague and limited information
mmm) power spectrum estimation based on scarce and poor data

e efficient numerical analysis of responses
mm) targeted first passage identification
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Physics-based covariance model

MODIFIED EXPONENTIAL COVARIANCE

Karhunen-Loéve expansion

e random field Y(x,0) 0 — elementary events
2 £,(0) — random variables
Y(X’ e) a 21‘/7“7 = (e)'f" (X) A — constant, positive real numbers

n
e covariance function f,(x) — real functions, orthonormal

0 X — spatial / temporal coordinate
C(Xy, X,) = D Ay - (%) - £.(X,)
n=1
e Stochastic Finite Element Method e realization y(x) (example)
.00 4n =l12,8,4] .., N
} —
—a a X

FE model

e efficiency criterion

» minimum number N of §,(8) and f,(X) ===} larger Finite Elements
smaller number of dof
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Physics-based covariance model

MODIFIED EXPONENTIAL COVARIANCE

Modification of the Exponential Covariance Model

e traditional e modified
C(Xl, X2) _ e—a~‘X1—X2‘ — e—a-‘u‘ 6(Xl, X2) _ e—'é-‘u‘ (1 4 a ) ‘u ) , U=X1—X2
» o) = 0 not complied with » o) =0
ou |, ou o
» directionality of the » non-directionality of the
field coordinate x (time) field coordinate x (space)
Y(X+1) =c-Y(X)+W(X) Y(X) =c-[Y(Xx-1)+ Y(X+1) |+ W(X)
(first-order process in time) (second-order process in time)

linear modification AC(X;—X%3), X, =0

function, 4 = 0.5
traditional, a = 0.5
modified, a4 = 0.5
modified, 4 = 1.0

6 -4 -2 0 2 4 6 x
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Physics-based covariance model

MODIFIED EXPONENTIAL COVARIANCE

Generalization: Whittle-Matern Kernel
vV
(VZV%) K, (VZV%), T=2X1— Xy

v = “smoothness”: sample paths are [v]—1 times differentiable

21—V

r'(v)

CV(t) =

b = correlation length

ev=0.5 traditional exponential covariance kernel
CO5(t) = e~ ITl/b not differentiable
ev=15 modified exponential covariance kernel

C1>(t) = exp(—I|z|/b)(1 + |7|/b) once differentiable

oV =00 squared exponential covariance kernel

C*(t) = exp(—12/b?) infinite differentiability
(unrealistic, hence
limited to v = 3.5)
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Physics-based covariance model

MODIFIED EXPONENTIAL COVARIANCE

Convergence of corresponding power spectra
e number of terms in Shinozuka-Deodatis expansion to represent
99.9% of the original signal

» higher-order differentiability at zero-lag causes faster convergence

» analytical solutions for the realizations exist for v=0.5 and v=1.5
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Spanos, P.D.; Beer, M.; Red-Horse, J. (2007):

Karhunen-Loéve Expansion of Stochastic Processes with a Modified Exponential Covariance Kernel, ASCE Journal of Engineering Mechanics, 133(7), 773-779.
Kosheleva, O.; Beer, M. (2016):

Why Modified exponential covariance kernel is empirically successful: A theoretical explanation, Journal of Uncertain Systems, 10(1), 10-14.

Faes, M.G.R.; Broggi, M.; Spanos, P.D.; Beer, M. (2022):

Elucidating appealing features of differentiable auto-correlation functions: a study on the modified exponential kernel, Probabilistic Engineering Mechanics, 69, 103269.
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Power spectrum estimation based on scarce and poor data

JOINT TIME-FREQUENCY ANALYSIS
Excitation —) System m=) Response

non-stationary
stochastic process

B g : non-stationary
I'Iw i stochastic process
(earthquake, wind, Rt

ocean waves,
blast events etc)

nonlinear and time-varying behavior
due to severe dynamic excitation

e excitations with time-varying intensity & frequency content
mmm) joint time-frequency analysis

1
(ny —my)Aw

e generalized harmonic wavelets !

» orthogonality, flexible window size,
non-overlapping supports

|“’(€n,n),;¢ (w) I

Oo 2 _ TO G 2 0 mAw A mahw .
[lrofac-22 3w, f |
T
S(mi,ti):—°E|:‘V\/(im)k2:|, MA® < ©, < NA®, K T < i<k+:L .
2n(n-m) o n—m n-m

Beer, M.; Gholami, A.; Kreinovich, V. (2019):
A Theoretical Explanation for the Efficiency of Generalized Harmonic Wavelets in Engineering and Seismic Spectral Analysis, Mathematical Structures and Modeling, 3(51), 97-104.
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Power spectrum estimation based on scarce and poor data

JOINT TIME-FREQUENCY ANALYSIS

Incomplete data

e Compressive sensing approach e Minimization of Zx;| in AX =y
promotes sparse solutions
Least squares L1 minimization

a+2b=1

O

Assume sparsity in a known basis

Stochastic process with 3 | |
harmonics and white noise Assumeisparsity in harmonic basis to

identify key frequencies

5

é 2+ * I — - # CS reconstruction H
% . —-+* source harmonic amplitudes
s I
5 S 15} i L
5 i i
5 I ¢ 1 1 1 1 1 g L i i |
1 2 \ I3/ 4 5 6 & | i ie i
Limited number of sample LI | -]
. . - I I I
points available L | |
| 1 | 1 & 1 [ E™ 1 ,-I
00 20 40 60 80 100 120

frequency (rad/s)
Comerford, L.; Kougioumtzoglou, I.A.; Beer, M. (2016):
Compressive sensing based stochastic process power spectrum estimation subject to missing data, Probabilistic Engineering Mechanics, 44, 66—76.
Zhang, Y.J.; Comerford, L.A.; Kougioumtzoglou, |.A.; Beer, M. (2018):
Lp-norm minimization for stochastic process power spectrum estimation subject to incomplete data, Mechanical Systems and Signal Processing, 101, 361-376.
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Power spectrum estimation based on scarce and poor data

EXAMPLE: RELIABILITY ANALYSIS

Incomplete Earthquake Records Simulated
realizations

Spectrum estimation

Incomplete N

non-stationary ﬂﬂM‘g—w‘m—w

earthquake

records *WMMMV&M_
time

MR- /

\J v
)ﬂ{“ ﬂf&., L Rdrad M/‘/\MN\ 4 Aoy . .r- .
d r I Ve Reliability Analysis
u‘w lﬁ%} Walo— ,,‘\" MFM]#M?MMMA
time wtime V Subset Sampling;
P; depending
on threshold
for interstory drift
Data reconstruction \V‘:i;'

Comerford, L.; Jensen, H.A.; Mayorgab, F.; Beer, M.; Kougioumtzoglou, I.A. (2017):
Compressive sensing with an adaptive wavelet basis for structural system response and reliability analysis under missing data, Computers and Structures, 182, 26-40
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Failure probability

Power spectrum estimation based on scarce and poor data

EXAMPLE: RELIABILITY ANALYSIS

Incomplete Earthquake Records
e data removed randomly (10%, 20%, 30%, 40%)

No missing data

004, oo

10 % missing data

0.04

002 et

0
0 100

Michael Beer
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Power spectrum estimation based on scarce and poor data

RELAXED POWER SPECTRA

Sampling Uncertainty

e ensemble of power spectra
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Behrendt, M.; Bittner, M.; Comerford, L.; Beer, M.; Chen, J.B. (2022):
Relaxed Power Spectrum Estimation from Multiple Data Records utilising Subjective Probabilities, Mechanical Systems and Signal Processing, 165, Article 108346.
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Power spectrum estimation based on scarce and poor data

RELAXED POWER SPECTRA
Sampling Uncertainty

e ensemble of power spectra

example:
effect on response statistics of
SDOF oscillator

800

600 |

400 1

Occurence

200

0.1

0.15

[Standard) SRM
RSRM

0.2 0.25
Max. displacement (m)

Behrendt, M.; Bittner, M.; Comerford, L.; Beer, M.; Chen, J.B. (2022):
Relaxed Power Spectrum Estimation from Multiple Data Records utilising Subjective Probabilities, Mechanical Systems and Signal Processing, 165, Article 108346.

Michael Beer

0.3

o
(5]
T

D e O s O
(=] K (]
48] o

:

Power Spectral Density (mzisa)
(4]

o
pry
w

(=]

-
T

| ensemble
i | e grisemble mean

(=]

Frequency (rad/s)

confidence bounds and
truncated normal distribution
for each frequency

1

c

-8 0.8

3

£

B 06

o

2

5 0.4

=

E Empricial CDF

(_:) 0.2 CDF (truncated normal)

! 95% confidence bounds

0

0.05 0.1 0.15 0.2
Power Spectral Density (mzfsa)

0.25

12/ 22



Power spectrum estimation based on scarce and poor data

IMPRECISE POWER SPECTRA
Limited Data

e empirical bounds on power spectrum
» identification of the basis power spectrum of the ensemble

» fitting an RBF network to the basis power spectrum
» optimization of the weights of the basis functions to find PSD bounds

m
Sopt(wn; whP) = Z Wiup ¢;(w) + by min Z |Sopt (Wp; WHP) — Sopt (wn; WIOW)|
i=1 wn

Sopt (wn; Wup) 2 Smax (wn)
.
Sopt (wn: w OW) < Smin (wn)

Sopt (wp; wW) =0

m
Sopt (wn; W'V) = Z wioW ¢ (w) + b,
i=1

©
[e2]
1

Ensemble

[ Bounds

e
)

Power spectral density (m 2!53)
o o
[\%] =

[=]

5 10 15 20 25 30 35 40 45
Frequency (rad/s)
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Power spectrum estimation based on scarce and poor data

IMPRECISE POWER SPECTRA

Poor Data (interval-valued) .
® rigorous bounds on power spectrum Jsl , \
» expansion of DFT to interval-DFT ‘("A | \ Il [}
> 0r |
» resolving dependability problem by | | | |
intrinsic identification of extreme 251 | \'
amplitudes for each frequency
-5 I L |
» construction of bounds of PSD . 0 ) e 150
8 —

Midpoint spectrum
Interval extension
[ United extension

0]
T

Behrendt, M.; de Angelis, M.; Comerford, L.A.; Zhang, Y.J.; Beer, M. (2022):
Projecting interval uncertainty through the discrete Fourier transform: an application to
time signals with poor precision,

Processing, Mechanical Systems and Signal Processing, 172, Article 108920
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Targeted first passage identification

TIME DEPENDENT RELIABILITY ANALYSIS
Analysis with interval-valued stochastic models

e explicit search for result interval bounds
» optimization searching the space of interval parameters

%21 y = (X1, X3)
./7§A‘—> y

er

interval analysis: repeated stochastic analysis

stochastic analysis: repeated deterministic structural analysis

deterministic structural analysis

Nested loop == Goal: pre-solve optimization to
calculate interval result from
a single efficient stochastic analysis
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Targeted first passage identification

TIME DEPENDENT RELIABILITY ANALYSIS

First passage problem

e pre-identification of 0" such that e Operator norm theory
P = ) I.(z,6°)f, (z)dz HAi(e)z <|c,(0)
with Operator norm ‘C

mmm) smallest |c;(0)] provides
upper bound on ,,amplification*

oot Ll 2

0 = arg max[max maxHA

via standard optimization
on the physical model (ie FEM)
without repeated reliability analysis
e Karhunen-Loeve expansion

e requirement: A
find a continuous linear map A
that relates random input z v (t.,2) = 3 Ate, h (tk —t )(”z v, Az, j
to random response y b1 AU

y(0)=A(6)z

Faes, M.; Valdebenito, M.A.; Moens, D.; Beer, M. (2020):
Bounding the First Excursion Probability of Linear Structures Subjected to Imprecise Stochastic Loading, Computers and Structures 239, 106320.

Faes, M.; Valdebenito, M.A.; Moens, D.; Beer, M. (2021):
Operator norm theory as an efficient tool to propagate hybrid uncertainties and calculate imprecise probabilities,
Michael Beer Mechanical Systems and Signal Processing 152, 107482. 16 / 22



Targeted first passage identification

TIME DEPENDENT RELIABILITY ANALYSIS

Example: clamped steel plate

e structural model e load model
» 100 shell elements, linear
» 110 nodes
» Dirichlet boundary conditions with

on clamp » KL-basis B
» 10 standard normal rv’s z

eij+93-5(e4,r)-z

2

F(r,e,z):l-el-sin(

L

/

/
[ /S S S S S S S S

e interval parameters

» 0, and 6, governing the
expected value of random load field

» 05 standard deviation of load field
» 0,: correlation length of load field
» E: Young’s modulus

» t: plate thickness

e P; for exceedance of displacement
at corner point of 15 cm
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Targeted first passage identification

TIME DEPENDENT RELIABILITY ANALYSIS

Example: clamped steel plate

e dependencies between interval parameters, operator norm and P;

0.8
0.12

0.11

t [m] x1073
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Targeted first passage identification

TIME DEPENDENT RELIABILITY ANALYSIS

Example: clamped steel plate
e results and numerical efficiency

» particle swarm optimization to evaluate operator norm

» FORM to compute P; (problem linear in z and low dimensionality)

» comparison with vertex method and double loop solution

vertex method operator norm double loop
0 0 0 0 0 )
operator norm | 0.0208 0.0859 | 0.0208 0.1112 | 0.0208 0.1112
Pe 8.67-10°% 0.2907 | 8.67-10°% 0.4889 |8.67-10°% 0.4889
FE analyses 1794 640+47 880+33 | 18156 26539

—)

Michael Beer

» numerical effort significantly reduced

» correct identification of internal optimal points
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Targeted first passage identification

TIME DEPENDENT RELIABILITY ANALYSIS

Example: six-story building under earthquake excitation

e structural model e load model
» 9500 shell and beam elements, » Gaussian stochastic process
linear » Autocorrelation governed by
» reinforced concrete modulated Clough-Penzien spectrum

e interval parameters

» 7 parameters of the load model

» Young’s modulus of concrete
for each story

mm) 13 interval parameters

e P; for exceedance of interstory drift
of 2-10-3 times the story height
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Targeted first passage identification

TIME DEPENDENT RELIABILITY ANALYSIS

Example: six-story building under earthquake excitation
e results and numerical efficiency

» particle swarm optimization to evaluate operator norm
» directional importance sampling to compute P;
» comparison with vertex method and quasi MCS to explore intervals

P -

¢ operator norm: 3500 FE calls
x vertex method: 4.1 M FE calls
- QMCS: 5 M FE calls

102

104

106
mm) numerical effort significantly reduced

10_8 [ R TR R T 1 Lo
1.2-10-3 1.6-10-3

Michael Beer
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Efficient uncertainty quantification for structural dynamics analysis

RESUME

Efficient and effective modeling and processing of
aleatory and epistemic uncertainties

e modified exponential covariance provides realistic
and efficient stochastic process model

e compressive sensing allows PSD estimation
with fragmentary data

e relaxed and imprecise PSD quantify epistemic uncertainty
from limited and imprecise data

e operator norm theory facilitates efficient solution of
first passage problems with interval-valued stochastic models

Combinations of developments facilitate efficient and realistic
stochastic dynamics analysis of structures
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