Time-dependent reliability analysis with aleatory and epistemic uncertainties

Michael Beer

Institute for Risk and Reliability

STOCHASTIC STRUCTURAL DYNAMICS

Uncertainties: Aleatory and Epistemic

Challenges

- appropriate model for spatial and temporal random quantities
	- **physics-based covariance model**
- effective quantification of vague and limited information

power spectrum estimation based on scarce and poor data

- efficient numerical analysis of responses
	- targeted first passage identification

MODIFIED EXPONENTIAL COVARIANCE

Karhunen-Loéve expansion

• random field $Y(x,\theta)$

 $Y(x, \theta) = \sum_{n=1}^{\infty} \sqrt{\lambda_n} \cdot \xi_n(\theta) \cdot f_n(x)$

• covariance function

∞ = $_1, x_2$) = $\sum \lambda_n \cdot f_n(x_1) \cdot f_n(x_2)$ $n = 1$ $C(x_1, x_2) = \sum \lambda_n \cdot f_n(x_1) \cdot f_n(x_2)$

• Stochastic Finite Element Method • realization $y(x)$ (example)

- efficiency criterion
	- » minimum number N of $\xi_n(\theta)$ and $f_n(x)$ and $f_n(x)$ larger Finite Elements

 θ – elementary events

- ξ_n($θ$) random variables
- λ_n constant, positive real numbers
- $f_n(x)$ real functions, orthonormal

x − spatial / temporal coordinate

MODIFIED EXPONENTIAL COVARIANCE

Modification of the Exponential Covariance Model

• traditional

$$
C(x_1, x_2) = e^{-a|x_1 - x_2|} = e^{-a|u}
$$

$$
\gg \left. \frac{\partial C(u)}{\partial u} \right|_{u=0} = 0 \text{ not compiled with}
$$

\n- $$
\ast
$$
 directionality of the field coordinate x (time)
\n- $Y(x + 1) = c \cdot Y(x) + W(x)$ (first-order process in time)
\n

linear modification function, $\hat{a} = 0.5$ $C(x_1-x_2)$, $x_2 = 0$

−6 −4 −2 0 2 4 6 x₁

 Ω

1

data

• modified $\hat{C}(x_1, x_2) = e^{-\hat{a} |u|} (1 + \hat{a} \cdot |u|), u = x_1 - x_2$ » $\frac{\partial \hat{C}(u)}{\partial u}$ = 0 u

=

 $u = 0$

 $Y(x) = c \cdot [Y(x - 1) + Y(x + 1)] + W(x)$ » non-directionality of the field coordinate x (space) (second-order process in time)

Michael Beer 4 / 22

Physics-based covariance model

MODIFIED EXPONENTIAL COVARIANCE Generalization: Whittle-Matèrn Kernel

$$
C^{\nu}(\tau) = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\sqrt{2\nu}\frac{\tau}{b}\right)^{\nu} K_{\nu} \left(\sqrt{2\nu}\frac{\tau}{b}\right), \quad \tau = x_1 - x_2
$$

 \sim \sim

 $v =$ "smoothness": sample paths are $[v]$ −1 times differentiable $b =$ correlation length

• $\nu = 0.5$ **traditional exponential covariance kernel** $C^{0.5}(\tau) = e^{-|\tau|/b}$ not differentiable

- $\nu = 1.5$ modified exponential covariance kernel $C^{1.5}(\tau) = \exp(-|\tau|/b)(1 + |\tau|/b)$ once differentiable
- $\nu = \infty$ squared exponential covariance kernel $C^{\infty}(\tau) = \exp(-\tau^2/b^2)$

infinite differentiability (unrealistic, hence limited to $v = 3.5$)

Physics-based covariance model

MODIFIED EXPONENTIAL COVARIANCE

Convergence of corresponding power spectra

- number of terms in Shinozuka-Deodatis expansion to represent 99.9% of the original signal
	- » higher-order differentiability at zero-lag causes faster convergence
	- \ast analytical solutions for the realizations exist for ν =0.5 and ν =1.5
10⁵ **ENTING ENTINEER CONSUMERATION**

Spanos, P.D.; Beer, M.; Red-Horse, J. (2007):

Karhunen-Loéve Expansion of Stochastic Processes with a Modified Exponential Covariance Kernel, ASCE Journal of Engineering Mechanics, 133(7), 773–779. Kosheleva, O.; Beer, M. (2016):

Why Modified exponential covariance kernel is empirically successful: A theoretical explanation, Journal of Uncertain Systems, 10(1), 10–14.

Faes, M.G.R.; Broggi, M.; Spanos, P.D.; Beer, M. (2022):

Elucidating appealing features of differentiable auto-correlation functions: a study on the modified exponential kernel, Probabilistic Engineering Mechanics, 69, 103269.

JOINT TIME-FREQUENCY ANALYSIS

Excitation

non-stationary stochastic process

(earthquake, wind, ocean waves, blast events etc)

Response

non-stationary stochastic process

nonlinear and time-varying behavior due to severe dynamic excitation

• excitations with time-varying intensity & frequency content joint time-frequency analysis

Beer, M.; Gholami, A.; Kreinovich, V. (2019):

A Theoretical Explanation for the Efficiency of Generalized Harmonic Wavelets in Engineering and Seismic Spectral Analysis, Mathematical Structures and Modeling, 3(51), 97–104.

JOINT TIME-FREQUENCY ANALYSIS Incomplete data

• Compressive sensing approach

Assume sparsity in a known basis

Stochastic process with 3 harmonics and white noise

• Minimization of $\Sigma_i |x_i|$ in $Ax = y$ promotes sparse solutions

Least squares L1 minimization

Assume sparsity in harmonic basis to identify key frequencies

Comerford, L.; Kougioumtzoglou, I.A.; Beer, M. (2016):

Compressive sensing based stochastic process power spectrum estimation subject to missing data, Probabilistic Engineering Mechanics, 44, 66–76. Zhang, Y.J.; Comerford, L.A.; Kougioumtzoglou, I.A.; Beer, M. (2018):

Lp-norm minimization for stochastic process power spectrum estimation subject to incomplete data, Mechanical Systems and Signal Processing, 101, 361–376.

EXAMPLE: RELIABILITY ANALYSIS

Incomplete Earthquake Records

Comerford, L.; Jensen, H.A.; Mayorgab, F.; Beer, M.; Kougioumtzoglou, I.A. (2017): Compressive sensing with an adaptive wavelet basis for structural system response and reliability analysis under missing data, Computers and Structures, 182, 26–40

EXAMPLE: RELIABILITY ANALYSIS Incomplete Earthquake Records

• data removed randomly (10%, 20%, 30%, 40%)

RELAXED POWER SPECTRA

Sampling Uncertainty

• ensemble of power spectra

Behrendt, M.; Bittner, M.; Comerford, L.; Beer, M.; Chen, J.B. (2022): Relaxed Power Spectrum Estimation from Multiple Data Records utilising Subjective Probabilities, Mechanical Systems and Signal Processing, 165, Article 108346.

RELAXED POWER SPECTRA

Sampling Uncertainty

• ensemble of power spectra

example: effect on response statistics of SDOF oscillator

Behrendt, M.; Bittner, M.; Comerford, L.; Beer, M.; Chen, J.B. (2022): Relaxed Power Spectrum Estimation from Multiple Data Records utilising Subjective Probabilities, Mechanical Systems and Signal Processing, 165, Article 108346.

IMPRECISE POWER SPECTRA

Limited Data

• empirical bounds on power spectrum

- » identification of the basis power spectrum of the ensemble
- » fitting an RBF network to the basis power spectrum
- » optimization of the weights of the basis functions to find PSD bounds

$$
\overline{S_{opt}}(\omega_n; w^{up}) = \sum_{i=1}^m w_i^{up} \phi_i(\omega) + b_0 \quad \text{min} \quad \sum_{\omega_n} |\overline{S_{opt}}(\omega_n; w^{up}) - b_0|
$$

$$
\underline{S_{opt}}(\omega_n; w^{low}) = \sum_{i=1}^m w_i^{low} \phi_i(\omega) + b_0 \quad \text{s.t.} \quad \overline{S_{opt}}(\omega_n; w^{up})
$$

$$
\underline{S_{opt}}(\omega_n; w^{low})
$$

$$
\sum_{n} |\overline{S_{opt}}(\omega_n; w^{up}) - S_{opt}(\omega_n; w^{low})|
$$

$$
\overline{S_{opt}}(\omega_n; w^{up}) \ge S_{max}(\omega_n)
$$

$$
\frac{S_{opt}(\omega_n; w^{low}) \le S_{min}(\omega_n)}{S_{opt}(\omega_n; w^{low}) \ge 0}
$$

IMPRECISE POWER SPECTRA

Poor Data (interval-valued)

• rigorous bounds on power spectrum

- » expansion of DFT to interval-DFT
- » resolving dependability problem by intrinsic identification of extreme amplitudes for each frequency

» construction of bounds of PSD

TIME DEPENDENT RELIABILITY ANALYSIS

Analysis with interval-valued stochastic models

- explicit search for result interval bounds
	- » optimization searching the space of interval parameters

interval analysis: repeated stochastic analysis

stochastic analysis: repeated deterministic structural analysis

deterministic structural analysis

Nested loop \longrightarrow Goal: pre-solve optimization to calculate interval result from a single efficient stochastic analysis

TIME DEPENDENT RELIABILITY ANALYSIS

First passage problem

• pre-identification of θ^* such that

with **Operator norm** (z, θ) $\mathsf{t}_{z}(z)$ ∈ $= \int I_F (z, \theta)$ $f = \int_{Z \in \mathbb{R}^n} f F(Z) \cup f(Z)$ $P_f = \int I_F (z, \theta^*) f_z (z) dz$ $\theta^* = \argmax_{\theta \in \theta^*} \max_{\theta = 1,...,n_y} \max_{\theta} \|A_{i,1}(\theta)\|$ $\mathcal{I}^* = \argmax_{\theta \in \theta^1} \max_{\theta^1, \dots, \theta_N} \max_{\theta^2} \|\mathsf{A}_{\theta, \theta}(\theta)\|_2$

via standard optimization on the physical model (ie FEM) without repeated reliability analysis

• requirement:

find a continuous linear map A that relates random input z to random response y

Michael Beer Mechanical Systems and Signal Processing 152, 107482. New York 16 Your State of the State of the Mechanical Systems and Signal Processing 152, 107482. Faes, M.; Valdebenito, M.A.; Moens, D.; Beer, M. (2021): Operator norm theory as an efficient tool to propagate hybrid uncertainties and calculate imprecise probabilities,

• operator norm theory

$$
\begin{aligned}\n\left\| A_{i}(\theta) z \right\|_{p^{(1)}} &\leq \left| C_{i}(\theta) \right| \cdot \left\| z \right\|_{p^{(2)}} \\
\left\| y_{i}(t, \theta, z) \right\|_{p^{(1)}} &\leq \left| C_{i}(\theta) \right| \cdot \left\| z \right\|_{p^{(2)}} \\
\end{aligned}
$$
\nsmallest $| C_{i}(\theta) |$ provides
\nupper bound on "amplification"

• Karhunen-Loeve expansion
\n
$$
y_{i}\left(t_{k}, z\right) = \sum_{l_{1}=1}^{k} \Delta t \epsilon_{l_{1}} h_{i}\left(t_{k} - t_{l_{1}}\right) \left(\sum_{l_{2}=1}^{n_{k1}} \psi_{l_{1}, l_{2}} \sqrt{\lambda_{l_{2}}} z_{l_{2}}\right)
$$

 $y(\theta) = A(\theta)z$

Faes, M.; Valdebenito, M.A.; Moens, D.; Beer, M. (2020): Bounding the First Excursion Probability of Linear Structures Subjected to Imprecise Stochastic Loading, Computers and Structures 239, 106320.

TIME DEPENDENT RELIABILITY ANALYSIS

Example: clamped steel plate

- structural model
	- » 100 shell elements, linear
	- » 110 nodes
	- » Dirichlet boundary conditions on clamp

 \bullet P_f for exceedance of displacement at corner point of 15 cm

• load model

$$
F(r, \theta, z) = 1 \cdot \theta_1 \cdot \sin\left(\frac{\pi}{\theta_2}\right) + \theta_3 \cdot B\left(\theta_4, r\right) \cdot z
$$

with

- » KL-basis B
- » 10 standard normal rv's z
- interval parameters
	- $\gg \theta_1$ and θ_2 governing the expected value of random load field
	- $\gg \theta_3$: standard deviation of load field
	- $\gg \theta_4$: correlation length of load field
	- » E: Young's modulus
	- » t: plate thickness

TIME DEPENDENT RELIABILITY ANALYSIS

Example: clamped steel plate

 \bullet dependencies between interval parameters, operator norm and P_f

TIME DEPENDENT RELIABILITY ANALYSIS

Example: clamped steel plate

- results and numerical efficiency
	- » particle swarm optimization to evaluate operator norm
	- \ast FORM to compute P_f (problem linear in z and low dimensionality)
	- » comparison with vertex method and double loop solution

» numerical effort significantly reduced » correct identification of internal optimal points

TIME DEPENDENT RELIABILITY ANALYSIS

Example: six-story building under earthquake excitation

- structural model
	- » 9500 shell and beam elements, linear
	- » reinforced concrete

- load model
	- » Gaussian stochastic process
	- » Autocorrelation governed by modulated Clough-Penzien spectrum
- interval parameters
	- » 7 parameters of the load model
	- » Young's modulus of concrete for each story
		- 13 interval parameters
- P_f for exceedance of interstory drift of 2·10-3 times the story height

TIME DEPENDENT RELIABILITY ANALYSIS

Example: six-story building under earthquake excitation

- results and numerical efficiency
	- » particle swarm optimization to evaluate operator norm
	- \ast directional importance sampling to compute P_f
	- » comparison with vertex method and quasi MCS to explore intervals

Efficient uncertainty quantification for structural dynamics analysis

RESUMÉ

Efficient and effective modeling and processing of aleatory and epistemic uncertainties

- modified exponential covariance provides realistic and efficient stochastic process model
- compressive sensing allows PSD estimation with fragmentary data
- relaxed and imprecise PSD quantify epistemic uncertainty from limited and imprecise data
- operator norm theory facilitates efficient solution of first passage problems with interval-valued stochastic models

Combinations of developments facilitate efficient and realistic stochastic dynamics analysis of structures