
1 / 22Michael Beer

Time-dependent reliability analysis 
with aleatory and epistemic 
uncertainties

Michael Beer
Institute for
Risk and Reliability



2 / 22Michael Beer

STOCHASTIC STRUCTURAL DYNAMICS
Problem Characterization

Challenges
appropriate model for spatial and temporal random quantities•

Uncertainties: Aleatory and Epistemic

Pf

F(x)
set of
plausible
models

[Pf,l, Pf,r]

F(x)

crisp
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distribution 
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effective quantification of vague and limited information•

efficient numerical analysis of responses•

physics-based covariance model

power spectrum estimation based on scarce and poor data

targeted first passage identification
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MODIFIED EXPONENTIAL COVARIANCE
Physics-based covariance model

» minimum number N of ξn(θ) and fn(x) larger Finite Elements
smaller number of dof

Karhunen-Loéve expansion
random field Y(x,θ)•
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θ − elementary events
ξn(θ) − random variables
λn − constant, positive real numbers
fn(x) − real functions, orthonormal
x − spatial / temporal coordinate

covariance function•

Stochastic Finite Element Method• realization y(x) (example)•

xa−a 0

fn(x)

FE model

n = 1, 2, 3, 4, ..., N

efficiency criterion•
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MODIFIED EXPONENTIAL COVARIANCE
Physics-based covariance model
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Modification of the Exponential Covariance Model
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» non-directionality of the
field coordinate x (space)

(second-order process in time)(first-order process in time)
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MODIFIED EXPONENTIAL COVARIANCE
Physics-based covariance model

Generalization:  Whittle-Matèrn Kernel

𝜈𝜈 = “smoothness”: sample paths are ⌈𝜈𝜈⌉−1 times differentiable

• 𝜈𝜈 = 0.5 traditional exponential covariance kernel

b = correlation length

• 𝜈𝜈 = 1.5 modified exponential covariance kernel

• 𝜈𝜈 = ∞ squared exponential covariance kernel

not differentiable

once differentiable

infinite differentiability
(unrealistic, hence 
limited to 𝜈𝜈 = 3.5)
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MODIFIED EXPONENTIAL COVARIANCE
Physics-based covariance model

Convergence of corresponding power spectra
number of terms in Shinozuka-Deodatis expansion to represent
99.9% of the original signal

•

» higher-order differentiability at zero-lag causes faster convergence
» analytical solutions for the realizations exist for 𝜈𝜈=0.5 and 𝜈𝜈=1.5

Faes, M.G.R.; Broggi, M.; Spanos, P.D.; Beer, M. (2022):
Elucidating appealing features of differentiable auto-correlation functions:  a study on the modified exponential kernel, Probabilistic Engineering Mechanics, 69, 103269.

Spanos, P.D.; Beer, M.; Red-Horse, J. (2007):
Karhunen-Loéve Expansion of Stochastic Processes with a Modified Exponential Covariance Kernel, ASCE Journal of Engineering Mechanics, 133(7), 773–779.
Kosheleva, O.; Beer, M. (2016):
Why Modified exponential covariance kernel is empirically successful: A theoretical explanation, Journal of Uncertain Systems, 10(1), 10–14.
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JOINT TIME-FREQUENCY ANALYSIS
Response
non-stationary 
stochastic process

System

nonlinear and time-varying behavior
due to severe dynamic excitation

Excitation
non-stationary
stochastic process 
(earthquake, wind,
ocean waves,
blast events etc)

• excitations with time-varying intensity & frequency content
joint time-frequency analysis

generalized harmonic wavelets
» orthogonality, flexible window size,

non-overlapping supports
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Beer, M.; Gholami, A.; Kreinovich, V. (2019):
A Theoretical Explanation for the Efficiency of Generalized Harmonic Wavelets in Engineering and Seismic Spectral Analysis, Mathematical Structures and Modeling, 3(51), 97–104.
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Power spectrum estimation based on scarce and poor data
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JOINT TIME-FREQUENCY ANALYSIS

Compressive sensing approach•

Least squares L1 minimization

•

Assume sparsity in a known basis

Stochastic process with 3 
harmonics and white noise

Limited number of sample 
points available

Assume sparsity in harmonic basis to 
identify key frequencies

Incomplete data
Minimization of Σi|xi| in Ax = y
promotes sparse solutions

Comerford, L.; Kougioumtzoglou, I.A.; Beer, M. (2016):
Compressive sensing based stochastic process power spectrum estimation subject to missing data, Probabilistic Engineering Mechanics, 44, 66–76.
Zhang, Y.J.; Comerford, L.A.; Kougioumtzoglou, I.A.; Beer, M. (2018):
Lp-norm minimization for stochastic process power spectrum estimation subject to incomplete data, Mechanical Systems and Signal Processing, 101, 361–376.

Power spectrum estimation based on scarce and poor data
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Reliability Analysis

Incomplete
non-stationary 
earthquake 
records

Data reconstruction

Spectrum estimation

Simulated 
realizations

EXAMPLE: RELIABILITY ANALYSIS
Incomplete Earthquake Records

Subset Sampling;
Pf depending
on threshold
for interstory drift

Comerford, L.; Jensen, H.A.; Mayorgab, F.; Beer, M.; Kougioumtzoglou, I.A. (2017):
Compressive sensing with an adaptive wavelet basis for structural system response and reliability analysis under missing data, Computers and Structures, 182, 26–40

Power spectrum estimation based on scarce and poor data
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EXAMPLE: RELIABILITY ANALYSIS
Incomplete Earthquake Records

data removed randomly (10%, 20%, 30%, 40%)•

Power spectrum estimation based on scarce and poor data



11 / 22Michael Beer

RELAXED POWER SPECTRA

ensemble of power spectra•

Sampling Uncertainty

Behrendt, M.; Bittner, M.; Comerford, L.; Beer, M.; Chen, J.B. (2022):
Relaxed Power Spectrum Estimation from Multiple Data Records utilising Subjective Probabilities, Mechanical Systems and Signal Processing, 165, Article 108346.

PSD estimation

...

confidence bounds and 
truncated normal distribution for each frequency

Power spectrum estimation based on scarce and poor data
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RELAXED POWER SPECTRA

ensemble of power spectra•

Sampling Uncertainty

Behrendt, M.; Bittner, M.; Comerford, L.; Beer, M.; Chen, J.B. (2022):
Relaxed Power Spectrum Estimation from Multiple Data Records utilising Subjective Probabilities, Mechanical Systems and Signal Processing, 165, Article 108346.

...

confidence bounds and 
truncated normal distribution
for each frequency

example: 
effect on response statistics of
SDOF oscillator

relaxed

standard

Power spectrum estimation based on scarce and poor data
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IMPRECISE POWER SPECTRA

empirical bounds on power spectrum•

Limited Data

Power spectrum estimation based on scarce and poor data

» fitting an RBF network to the basis power spectrum
» optimization of the weights of the basis functions to find PSD bounds

» identification of the basis power spectrum of the ensemble

min

s.t.
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IMPRECISE POWER SPECTRA

rigorous bounds on power spectrum•

Poor Data (interval-valued)

Power spectrum estimation based on scarce and poor data

» resolving dependability problem by
intrinsic identification of extreme
amplitudes for each frequency  

» construction of bounds of PSD

» expansion of DFT to interval-DFT

Behrendt, M.; de Angelis, M.; Comerford, L.A.; Zhang, Y.J.; Beer, M. (2022):
Projecting interval uncertainty through the discrete Fourier transform: an application to
time signals with poor precision,
Processing, Mechanical Systems and Signal Processing, 172, Article 108920
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Targeted first passage identification

deterministic structural analysis

stochastic analysis:  repeated deterministic structural analysis

interval analysis:  repeated stochastic analysis

Nested loop  Goal: pre-solve optimization to
calculate interval result from
a single efficient stochastic analysis 

Analysis with interval-valued stochastic models
TIME DEPENDENT RELIABILITY ANALYSIS

» optimization searching the space of interval parameters
explicit search for result interval bounds•

x1

x2

y

y = f(x1, x2)
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TIME DEPENDENT RELIABILITY ANALYSIS
First passage problem
•

Operator normwith

smallest |ci(θ)| provides
upper bound on „amplification“
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θ*pre-identification of    such that

via standard optimization
on the physical model (ie FEM)
without repeated reliability analysis

requirement:
find a continuous linear map A
that relates random input z
to random response y

•

• operator norm theory
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y t z zc, ,

Faes, M.; Valdebenito, M.A.; Moens, D.; Beer, M. (2021):
Operator norm theory as an efficient tool to propagate hybrid uncertainties and calculate imprecise probabilities,
Mechanical Systems and Signal Processing 152, 107482.

Faes, M.; Valdebenito, M.A.; Moens, D.;  Beer, M. (2020):
Bounding the First Excursion Probability of Linear Structures Subjected to Imprecise Stochastic Loading, Computers and Structures 239, 106320.

• Karhunen-Loeve expansion
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Targeted first passage identification
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TIME DEPENDENT RELIABILITY ANALYSIS
Example: clamped steel plate
• structural model

y
x

z

h

L

t

L

» 100 shell elements, linear
» 110 nodes
» Dirichlet boundary conditions

on clamp

• load model

( ) ( ) π
θ = ⋅ θ ⋅ + θ ⋅ θ ⋅ θ 

1 3 4
2

F r z 1 B r z, , sin ,

with
» KL-basis B
» 10 standard normal rv’s z

• interval parameters

» θ1 and θ2 governing the 
expected value of random load field

» θ3: standard deviation of load field
» θ4: correlation length of load field
» E: Young’s modulus
» t: plate thickness

• Pf for exceedance of displacement
at corner point of 15 cm

Targeted first passage identification
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TIME DEPENDENT RELIABILITY ANALYSIS
Example: clamped steel plate
• dependencies between interval parameters, operator norm and Pf

Targeted first passage identification
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TIME DEPENDENT RELIABILITY ANALYSIS
Example: clamped steel plate
• results and numerical efficiency

» particle swarm optimization to evaluate operator norm
» FORM to compute Pf (problem linear in z and low dimensionality)
» comparison with vertex method and double loop solution

» numerical effort significantly reduced
» correct identification of internal optimal points

operator norm
Pf

FE analyses

vertex method operator norm double loop
θ*θ* θ*θ* θ*θ*

0.0208      0.0859 0.0208      0.1112 0.0208      0.1112
8.67·10-6 0.2907 8.67·10-6 0.4889 8.67·10-6 0.4889
1794 640+47     880+33 18156       26539

Targeted first passage identification
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TIME DEPENDENT RELIABILITY ANALYSIS
Example: six-story building under earthquake excitation
• structural model

» 9500 shell and beam elements,
linear

» reinforced concrete

• load model
» Gaussian stochastic process
» Autocorrelation governed by

modulated Clough-Penzien spectrum

• interval parameters

» 7 parameters of the load model
» Young’s modulus of concrete

for each story

• Pf for exceedance of interstory drift 
of 2·10-3 times the story height

13 interval parameters

Targeted first passage identification
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Pf

10-2

10-4

10-6

10-8

1.2·10-3 1.6·10-3 2.0·10-3 operator norm

operator norm: 3500 FE calls
vertex method: 4.1 M FE calls
QMCS:             5 M FE calls

TIME DEPENDENT RELIABILITY ANALYSIS

• results and numerical efficiency
» particle swarm optimization to evaluate operator norm
» directional importance sampling to compute Pf

» comparison with vertex method and quasi MCS to explore intervals

numerical effort significantly reduced

Example: six-story building under earthquake excitation

Targeted first passage identification
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RESUMÉ

• modified exponential covariance provides realistic
and efficient stochastic process model 

operator norm theory facilitates efficient solution of 
first passage problems with interval-valued stochastic models

•

Efficient and effective modeling and processing of
aleatory and epistemic uncertainties

compressive sensing allows PSD estimation 
with fragmentary data 

•

Efficient uncertainty quantification for structural dynamics analysis

relaxed and imprecise PSD quantify epistemic uncertainty 
from limited and imprecise data

•

Combinations of developments facilitate efficient and realistic
stochastic dynamics analysis of structures


	Time-dependent reliability analysis with aleatory and epistemic uncertainties
	Stochastic Structural dynamics
	modified exponential covariance
	modified exponential covariance
	modified exponential covariance
	modified exponential covariance
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Resumé

