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Time-variant reliability: definitions TI.ITI

At time t, the structure can be characterized by its resistance (or, capacity), R(t), and the load (or, demand)
on the structure, S(t). R(t) and S(t) are random variables.

» One can define a point-in-time failure event as
Fr(t) = {M(t) < 0} = {R(t) = S(t)}
where M(t) = R(t) — S(t) is the safety margin.

» More generally, the structure can be modelled by a limit state function g(Y,t), where Y is comprised of all
random variables and random processes in the problem. Then

F*(t) ={g(Y,t) <0}.



Time-variant reliability: definitions (2) TI.ITI

To compute the time-variant reliability, one must consider the random processes {R(7)};c[or; and
{S(®)}re0,r7 » @nd account for all point-in-time failure events up to time T.

» The failure event for a given time duration [0, T] is defined as:
F(T) ={3t€[0,Tl:R(z) < S(1)}
* The time-variant structural reliability is given by:
L(0,T) = Pr{R(t) > S(t),Vt € [0,T]} =1 — Pr{F(T)}.
» Using the more general definition, the probability of a failure up to time T is given by:

Pr(0,T) = Pr{F(T)} = Pr{ming<,rg(Y,7) < 0} .



Time-dependent reliability: basic approaches TI.ITI

« Time-integrated approach: the whole service period [0,T] of the structure is considered as a single
time unit. The reliability is computed based on statistical properties of the random variables that relate to
the whole service period.

» Discretized approach: Shorter time intervals, such as a year or duration of a storm, are considered. The
reliability within each time unit is estimated based on extreme value theory. Failure probability over the
whole service period [0, T] is then determined (approximately) from the interval failure probabilities.

« Out-crossing theory based approach: The structural failure event is viewed as an outcrossing event of
a random process. “Outcrossing” implies that the safety margin process M(t) = R(t) — S(t), or the
random process g(Y,7), becomes zero or less in the period [0,T]. We estimate the first-passage
probability, i.e., the probability that M(t) < 0 occurs during [0, T] using random process theory.




Time-integrated approach TI.ITI

We consider a case in which every realization of S(t) is non-decreasing and every realization of R(t) is
non-increasing.

In this case, it is reasonable to compare the R,,;,, with S,,,,,., both occurring attime t =T.

An instantaneous estimate of the failure probability at time t is given by:
R, S
A ’

PriF*(t)} = Prir(t) < S(t)}
In this case, Pr(0,T) = Pr{F*(T)}. This probability can be computed by N

time-invariant reliability methods.

This approach is applicable to the general case, if g(Y, t) is :
monotonically non-increasing, e.g., g(Y,t) = D, — h (Y, t) where T
h4(Y, t) is a deterioration model and D, is the deterioration limit. 0

-
time

Image Source: Wang C. Structural reliability and time-dependent reliability. 2021 Springer series in reliability engineering, Springer Cham.
DOI https://doi.org/10.1007/978-3-030-62505-4 .
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Example 1 TI.ITI

Consider a steel plate subjected to corrosion. Failure occurs when the corrosion loss exceeds the plate
thickness w.

The limit state function is g(Y,t) = w — A(t — C), where Y = [A4, C].

A represents the corrosion rate and C denotes the coating life. o'
A, C: Lognormal random variables, independent 104
Uy = 0.6 mm/yr (mean), o4 = 0.5 mm/yr (standard deviation) = i
e = 5.0yr, o, =5.0yr ;z: 10‘5;
107 ¢
Pr(F(T)) = Pr(F*(T)) = Pr{g(Y,T) < 0} -
Exact solution possible through numerical intergation 10-125 : - - -

T'(in yr)

Reference: Straub D., Schneider R., Bismut E. and Kim H.Y. Reliability analysis of deteriorating structural systems. Structural Safety,
Volume 82, 2020, Article 101877.



Time-integrated approach (2)

The monotonicity assumption on S(t) may not hold in general.
Consider the R-S problem. If R(t) = R:

PF(Or T) = PI‘(R < Smax),

where S,,,,, = max{S(t)|t € [0, T]}.

If a suitable model for the CDF Fg_ () of ;.44 is available, then Pr(0,T) can be
evaluated by time-invariant reliability methods.

If R(t) is time-variant, or, more generally, if g(Y, t) shows random fluctuations in time, advanced methods
based on out-crossing theory or Monte Carlo simulation are typically required to evaluate Pz (0, T).

Image Source: Wang C. Structural reliability and time-dependent reliability. 2021 Springer series in reliability engineering, Springer Cham.
DOI https://doi.org/10.1007/978-3-030-62505-4 .
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Discretized approach TI.ITI

 Divide the whole service period [0, T] into multiple time units 0 = t, < t; <-:<t,, =T

« A common choice is yearly intervals, but a finer discretization is adopted if the service life is short

» Define interval failure events F;" = {minTE(tj_l,tj]R(YR'T) —S() < 0};j =1, ...,m; random variables Y that
determine resistance are separable from those that determine the load effects.

* R(t) is monotonically non-increasing.

I\

R, S

* Interval failure probability:

Pr(F/) =~ Pr(R(Yg,t;) < Spax;) (conservative)

Smax,j = max{S(t)|t € (tj_1, t;]}-

maximum error Pr(R(Yz,t; ) < Smax;) — Pr(R(Yr, tj-1) < Smax,j) 9(’)

T

L
0 t; t ft3 tm-1 time

* Pr(F) can be estimated by time-invariant reliability analysis.



Discretized approach (2) TI.ITI

* Inthe general case Y = {Y, S;;, S(t) }, where S, is the vector of time-invariant load effects and S(t) is the
vector of time-variant load effects.

* Interval failure events: F;" = {minfe(tj_l,tj] g¥Yp, S:,8(1),7) < O}.

» Interval failure probability: Pr(F;") = Pr(g(Y&, Sti, Smax,j, tj) < 0).

» The target failure event is a union of the interval failure events: F(T) = U}n=1 F;.

» Computation of Pr(F(T)) requires accounting for the dependence between the interval failure events.

» Exact computation of Pr(F(T)) requires solving a series system reliability problem.

- Series system bounds for Pr(F(T)):

maszl,___,mPr(P}-*) < Pr(F(T)) < D=1 Pr(Fj*)



Monte Carlo simulation TI.ITI

+ Simplest and most robust strategy to compute Pr(F(T)) = Pr(U7L, F;')

() k) )

« Generate samples Y, S;;7, Spax1 s ngc)lx,m, k=1,..,N

» Estimate of the failure probability:

Pr(F(T)) = %Zﬁ’zl I {[minjzlj___lmg (Yék),ng),S%%xJ, tj)] < 0}

(1-Pr(F (1))
NPr(F(T))

» Coefficient of variation of the estimate: § = \/

- Inefficient when computing small failure probabilities. Approximately, 108 samples are required to estimate
a failure probability of Pr(F(T)) = 10~° with a coefficient of variation of § = 10%. Infeasible for problems
with computationally expensive limit states.

« If the point-in-time failure probability is desirable, e.g., in the case of a monotonically decreasing limit state,
it can be estimated based on this approach.



Evaluation of Pr(F;") - First order reliability method TLUT

« Consider the interval failure probability Pr(F;") = Pr{g;(Y) < 0}, where g;(Y) = g(¥Yr, Sti» Smax,j» tj)
and Y = |Yg, S¢i, Smax. -

* Random vector Y is transformed to uncorrelated standard normal random vector U = T(Y) through iso-
probabilistic transformations.

* The limit state is expressed in terms of U: G;(U) = gj(T‘l(U)) Uit

- FORM uses the design point u; in the U - space:

u; = argmin||ul|
s.t. G; (U) < 0.
where ||:|| is the Euclidean norm.

. PI‘(P}-*) ~ CI)(_,Bj) where, ,Bj = |

u; || is the reliability index.

* u; can be used as the starting point of numerical optimization
to determine u; ;.



Evaluation of Pr(F;") - First order reliability method (2)

FORM approximation linearizes the limit state function G;(U) at U = u;, i.e.,
Pr(F;") = Pr{G; (U) < 0} = Pr{G;(U) < 0}

where,
G;(U) ~ G;(U) = G;(uf) + (VG;(w), (U —uj)) = (VG (), (U - wy))

* G;(U) is a normal random variable:

o b = E[G}W)] = —(v6, () u}) and o = \/Var[Gjl(U)] = ||v6; (u!

G;(U)—p}

“j

o M; = / is a standard normal random variable

*
U;

l
o Ifa; = then = (a;,u;) = |

Tl =
o Pr{G}(U) < 0} = Pr{M- < -} =2(-5)
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Evaluation of Pr(F(T)) = Pr(U7L, F;') - extension of FORM TLUT

Recall that F(T) = UL, Ff'
» Pr(UTL.F) = 1= Pr(NL. ) = 1 = Pr(NTL{M; > —f;})
» The random variables My, ..., M,,, are mutually correlated and jointly Gaussian.

» Since M,, ..., M,, have zero mean value, from symmetry we get
Pr(F(T)) =1 —-Pr(NJL F€) = 1 — &,,(B; p)
where ®,,(B; p) is the multivariate standard normal CDF with correlation matrix p evaluated

at B = (B, ..., Bm) - The element [p]; . is the correlation coefficient between M; and M, and is given by

[plix = E|M:M,|. [p]; can be computed from the form sensitivities a; and a;.
J, J J, j



Evaluation of Pr(F;") - Subset simulation TLTI

The probability Pr(F") = Pr{G;(U) < 0} is formulated as a sequence of conditional probabilities:
Pr{G;(U) < 0} = [Tj=1 Pr{G;(U) < by|G;(U) < by_1} = [Tk=1 Prc—1
L is the number of subsets and the b, are the intermediate thresholds with .o = by = b; =-:= b; = 0.

* The intermediate thresholds are selected so that the conditional probabilities are large, typically p = 0.1.

« The probability py ,—; can be estimated (accurately) by the standard Monte Carlo method:

Pik-1 & % =1 1{G;(U®) < by}

1[G j(w)<bj_1|fy(u)
PI'{Gj(ll)Sbk_l}

Samples U®),s = 1, ..., N are distributed according to the PDFfy x_; (u) = , where fy(u)

is the nominal PDF of U. The samples are generated through the Markov chain Monte Carlo method.

« During implementation, the thresholds are selected through an adaptive procedure.

Reference: Au S.K. and Beck J.L. Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic
Engineering Mechanics, Volume 16, 2001, pp. 263-277.



Example 1 - with FORM and subset simulation

Limit state function in the standard normal space:

_ e(mnAmlnAUA)(tj _ e(mnc+61ncUc)), where U = {U,, U.}.

Consider t; = 1yr, t, = 2yr,...,

t,o = 20yr. In this example, F;*
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Example 1 - sequential subset simulation

Fort; <t,..<tyy, wehave F,;; 2 Fjg 2 2 F.

The sequence of failure probabilities Pr(Fy), ..., Pr(F;,) can be estimated through sequential subset
simulation approach.

* * 20_ ._1 * *
PF(F}' ) = Pr(F3p) Hk=0] Pr(Fyo—k-11F20-k)

The failure probability Pr(F;,) is estimated using the standard subset simulation approach.

If Pr(F;y_r_11F20-%) < 0.1, additional subset levels can be introduced between F;,_, and F;,_,_;, as in
standard subset simulation.

If Pr(Fyy_1_1|F50—) = 0.1, use the failure samples in F;,_, to estimate Pr(F;y_x_1|Fso_1),
Pr(F2o-k-21Fz0-1), Pr(Fao-r-3lF20-1)- -, Pr(Foo_g—r|F20—4), until Pr(Fo_j 1 1F70-4) < 0.1.

Generate failure samples in F,,_,_,. and continue the procedure.

Reference: Straub D., Schneider R., Bismut E. and Kim H.Y. Reliability analysis of deteriorating structural systems. Structural Safety,
Volume 82, 2020, Article 101877.



Example 2 TI.ITI

The capacity of a system is described by a linearized deterioration model:
R(t) =ry — At

the initial resistance r, = 49.5MPa is deterministic and A is a normal random variable with mean u, =
0.2MPa/yr and standard deviation g, = 0.2MPa/yr.

The load effect is described by its annual maximum, S, ;, Which is i.i.d. for all years. S,,4, ; is @ normal
random variable with mean yus = 40MPa and standard deviation g = 2MPa.

F(T) = UjL, F/ where F; = {minre(tj_l,tj]R(T) —S(1) < O}, for yearly intervals m = T and t; = 1yr, t, = 2yr, ...
Without deterioration:
* Interval failure probability: Pr(F;") = Pr{Syqx; > 70}

m
* Pr(F(T)) =1—-[I/L, Pr(F°) =1- (Fsmax,j(ro)) =2-107°for T = 20yr .



Example 2 (2)

With deterioration;

* Interval failure probability: Pr(F*) ~ Pr{Spmax; > R(t;)} = Pr{g;(Y) < 0}, where Y = {4, Sipqx,;}
and g](Y) =Ty — At] — Smax,j-
« Limit state in the standard normal space: G;(U) = (ry — pat; — us) — tjoaUs — osUs ;.

+ Based on FORM:

tioa(ro—patj—is) Gs(To—MAtj—#s))

2,2, 2 ) 2.2, 2
tfo4+03 tio4+0g

o Design point u; = (
J J

o B = |ua_k _ ro—Halj—HUs o = tjoa as
J J 1252152 J 252452 [¢262462 |
jO'A+O'S jO'A+O'S jO'A+O'S

o Pr(F) = Pr{G;(U) < 0} = &(-p;).

2
tjtkO'A

o Pr(F(T)) = 1 — @,,(B; p) where B = (B, ..., Bm) @nd [pljx = ap japx =
' o /t20'2+0'2 /t20'2+02
jOATOs |[LgOATOS
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Example 2 (3)

10° ]
ety bounds -
107t —— FORM estimate -

1072 3

103 3

Pr(F(T))

107 3

10° 3

10'6 1 1 1
0 5 10 15 20
T(inyr)

FORM series system reliability bounds: max; ., Pr(F’) < Pr(F(T)) <1 -1}, (1 - Pr(P}-*))

19



Outcrossing theory-based approach TI.ITI

Consider the failure event:
F(T) = {3t € [0, T]: ming<;rg (Y, t) < 0}

where g(Y,t) = 0 is the limit state. Y is comprised of all random variables and random processes in the
structural reliability problem.

In the general case, g(Y,t) is a random process. Let N(t) denote the number of out-crossings of g(Y,t) from
the safe state to the unsafe safe in the time duration (0, ¢].

The probability of failure for the time duration [0, T] can be evaluated based on out-crossing theory:

P-(0,T) = Pr({go < 0}U{N(T) > 0}) =1 — (1 — Pr{gy, < O})Pr{N(T) = 0]g, = 0}

Jo is the limit state function value at t = 0. Failure in the time interval [0, T] corresponds either to failure at t =
0 or to a later outcrossing of the limit state surface if the system is in safe state at t = 0.



The Poisson approximation

» For a regular process g(Y, t), the outcrossing rate v(t) is defined as:

o PrN(t+AD-N(®)=1} _ |. Pr((g:>0) N{grsar<0)
v(t) = limpg0ae0 AL = limp¢0at>0 Ar

« The expected number of outcrossings in the time interval (0, t] is given by E[N(t)] = fotv(r)dr.

« If the occurrence of outcrossings is modeled by a Poisson point process

o the probability of no outcrossing in time interval (0, T] is approximated as:

0 T
f(’)TV(t)dt] e_fo v(t)dt

0!

T
Pr{N(T) = 0|g, = 0} = [ — e—fo v(t)dt

o the failure probability for the time interval [0, T] is approximately evaluated as:

T
PF(O, T) =1-— (1 — Pr{go < O})e—fo v(t)dt

« The probability Pr{g, < 0} can be evaluated using time-invariant reliability methods.



Outcrossing rate: Rice’s formula TI_ITI

b x(1)

Barrier

We consider g(Y,t) = a(t) — G(Y, t), i.e., failure occurs when the
process G (Y, t) outcrosses the barrier a(t).

Realization
of X(?)

Define X(t) = G(Y, t). It is assumed X (t) is differentiable.

» Consider a segment of the sample x(t) between the time

=y

instants t; and t; + dt. 0
» For sufficiently small dt, the curves can be taken as straight lines: Lxt) w0
o x(t; +dt) = x(t;) + xdt Lo
o a(ty +dt) =a(t) + adt am)\ ///
« Qutcrossing occurs at time t; +dt: /—{ ¥ "7 lfdf
o x(t;) < a(ty) o \ar
o x(t; +dt) = a(t; +dt),i.e., xdt —adt = a(t;) — x(t1) _
0 t t+dt !

Image Source: Melchers R.E. and Beck A.T. Structural reliability analysis and prediction. 2018 John Wiley and Sons Ltd.
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Outcrossing rate: Rice’s formula TI_ITI

» Number of out-crossings in the time interval dt:

N = fdoo fc?—(d—fc)dt fxx(x, x;t;)dxdx | x=a-(X-a)dt

fyi(x,%;t;) is the joint PDF of X(t) and X(¢t) att =t,

« Asdt = 0, fyy(x,x;t;) can be approximated by f,;(a, x;t;)
over therange a — (@ — x)dt < x < a:

)
Q
=Y

N = [ (a — 2)dtfyz(a,t;t)dx

» Qutcrossing rate at time t = t;:

v(ty) = limge g % = fdoo(d — %) fxx(a x;t)dx
o If a is time-independent, a = 0.

o Knowledge of f,x(a,x;t,) forall t; € (0,T] is required.

23



Special case of a Gaussian process

« If X(t) is a stationary Gaussian process:

o ux(t) = EIX()] = py, 03(8) = E[(X(0) — ux(D)*] = 03, ux(©) = 0 and o2 () = 2.

o The random variables X(t) and X(t) are independent:

FrrCate) 50) = e =3[ (+422) "+ 2

2MOx0 % ox %

_ . 5% 1/(a—uy 2
o Ifa(t) = a, the outcrossing rate v(t) = oy EXP {—5( - ) } forall t € (0,T].

« If X(t) is a non-stationary Gaussian process:

o5 () /1—p§X(t) a(t)—ix
V() = —— 0 (T ) [p(-h®) + ROP((®))
pxx®(a®)-px(®))

ox(t) [1-p2 4 (®)

where h(t) = and pyy(t) is the correlation coefficient between X (t) and X (t).

24



Example 3 - Linear dynamic system TI_ITI

« Idealized SDOF structure: Mass
P(t), X(t)
mX(t) +cX(@) + kX(t) = P(t)
Initial conditions: X(0) = 0, X(0) = 0 Damping
= Stiffness

 Failure event:

F(T) = (minge,erx® — X(t) <0} o I N ¥

 Displacement X(t) (assuming system is time-invariant): P(t) is a Gaussian random process
X(t) = [, hy(t —DP(2)dr
hy(t) is the impulse response function, given by:

hy (£) = m#wenwt sin(wgt); t = 0

: — |k — — 2 g —_C
with w = —, g =W 1 n4n=o—.

25



Example 3 (2) TI.ITI

 We consider P(t) is a Gaussian random process
o X(t) is a Gaussian random process

o X(t) = %X(t) = fot hy(t — t)P(t)dt is a Gaussian random process, where hy(t) = d%hx(t).

- Joint statistics of X(t) and X (¢t):
o ux(®) = E[X(D)] = [} hy(t — Dup(¥)dr, where up(t) = E[P(0)].
o px(t) = E[X(®)] = [ hx(t — Dup(r)dr.
o a2(t) = E[(X(t) — ux ()| = 5 J; hx(t = T)Kpp (11, 1)y (t — T2)d 1,07, .
o a2(t) = [, [ hg(t — 1) Kpp(ty, T)hyg (t — T,)dTydT,
o COV(X(0), X(®) = E[(X(0) = px () (X(®) = g (0))] = fy [§ hx (¢ = 12)Kpp (71, 72Dy (¢ = T2)dTy 7,

where Kpp(11,7;) = E[(P(T1) — HP(T1))(P(T2) — MP(Tz))]-

26



Discretized approach: random number of discrete events TI.ITI

6T,

S(9)
S(f)

e

’[\ /\I R Soee Smans
A~V \’V\/\/ V \l

T tlme 0

'ﬂ—— — -
\/

time

« The discretization is in terms of the number of occurrence of a particular event, e.g., a storm or an
earthquake of a particular duration.

« The number of discrete events as well as the time of occurrence is random.

* The interval failure events: F;'(T) = {minTE(leTjJ,gTj]R(r) —S(1) < 0},where T = {T,, ..., Ty} is the random
vector comprising of the occurrence time instants.

27



Load occurrence model TI.ITI

« Load occurrence is commonly modelled by a Poisson point process.

» For a stationary Poisson process with occurrence rate A:

(/'lT)ke —AT

PR k=012, ...

o PMF of the number of loads in [0,T] is Pr(N(T) = k) =

k
o Joint PDF of the occurrence times is given by f+(t) = (%) , where t = {t,, ..., t,.} € [0, T]*.

» For a non-stationary Poisson process with time-variant occurrence rate A(t):

k T
(foT A(t)dt) e~ Jo ADadt
k!

o Joint PDF of the occurrence times is given by f1(t) = 5‘;1%, where t = {t, ..., t;} € [0, T]*.
0

o PMF of the number of loads in [0, T] is Pr(N(T) = k) = k=012, ...

28



Solution approach

Consider the number of discrete events N(T) = k and occurrence times t = (t4, ..., t )~ fr(b).

The (conditional) time-dependent probability of failure:

Pr(F(TIN(T) =k, T =1t)) = Pr(Uf_, F/ (1))
Considering the randomness in the load occurrence times, we get:
Pr(F(TIN(T) = 1)) = [y - Jy Pr(Ufes (D) fr(ty, ., i) dty - diy

Taking into consideration the randomness associated with the number of load events:

Pr(F(T)) = X5_o Pr(N(T) = k)Pr(F(T|N(T) = k))

29



Summary TI.ITI

» Basic approaches for time-variant reliability analysis: time-integrated approach, discretized approach and
outcrossing theory-based approach.

» The first two methods enable the failure probability over the whole service life of the structure to be
evaluated using time-invariant reliability methods.

» The outcrossing theory-based approach establishes the limit state function as a random process. The
time-variant reliability is solved as a first-passage problem based on the Poisson approximation.

« The outcrossing rate of the limit state function can be evaluated using alternative methods: Rice'’s
formula, PHI2 method etc.

* Methods based on Monte Carlo simulation are more versatile for time-variant reliability estimation.






