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Time-variant reliability: definitions

At time !, the structure can be characterized by its resistance (or, capacity), " ! , and the load (or, demand)
on the structure, # ! . " ! and # ! are random variables.

• One can define a point-in-time failure event as

$∗ ! = ' ! ≤ 0 = " ! ≤ # !
where ' ! = " ! − # ! is the safety margin.

• More generally, the structure can be modelled by a limit state function + ,, ! , where , is comprised of all
random variables and random processes in the problem. Then

$∗ ! = + ,, ! ≤ 0 .
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Time-variant reliability: definitions (2)

To compute the time-variant reliability, one must consider the random processes ! " #∈ %,' and
( " #∈ %,' , and account for all point-in-time failure events up to time ).

• The failure event for a given time duration 0, ) is defined as:

+ ) = ∃" ∈ 0, ) : ! " ≤ ( "

• The time-variant structural reliability is given by:

0 0, ) = Pr ! 3 > ( 3 , ∀3 ∈ 0, ) = 1 − Pr + ) . 

• Using the more general definition, the probability of a failure up to time ) is given by:

89 0, ) = Pr + ) = Pr min%=#='> ?, " ≤ 0 .
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Time-dependent reliability: basic approaches

• Time-integrated approach: the whole service period 0, # of the structure is considered as a single
time unit. The reliability is computed based on statistical properties of the random variables that relate to
the whole service period.

• Discretized approach: Shorter time intervals, such as a year or duration of a storm, are considered. The
reliability within each time unit is estimated based on extreme value theory. Failure probability over the
whole service period 0, # is then determined (approximately) from the interval failure probabilities.

• Out-crossing theory based approach: The structural failure event is viewed as an outcrossing event of
a random process. “Outcrossing” implies that the safety margin process $ % = ' % − ) % , or the
random process * +, , , becomes zero or less in the period 0, # . We estimate the first-passage
probability, i.e., the probability that M % ≤ 0 occurs during 0, # using random process theory.
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Time-integrated approach

We consider a case in which every realization of ! " is non-decreasing and every realization of # " is 
non-increasing.

In this case, it is reasonable to compare the #$%& with !$'(, both occurring at time " = *.

An instantaneous estimate of the failure probability at time " is given by:

Pr -∗ " = Pr # " < ! "
In this case, 01 0, * = Pr -∗ * . This probability can be computed by
time-invariant reliability methods.

This approach is applicable to the general case, if 4 5, " is
monotonically non-increasing, e.g., 4 5, " = 678 − ℎ; 5, " where
ℎ; 5, " is a deterioration model and 678 is the deterioration limit.
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Example 1

Consider a steel plate subjected to corrosion. Failure occurs when the corrosion loss exceeds the plate
thickness !.

The limit state function is " #, % = ! − ( % − ) , where # = (, ) .                                                                  
( represents the corrosion rate and ) denotes the coating life.

(, ): Lognormal random variables, independent

+, = 0.6 ⁄mm yr (mean), 4, = 0.5 ⁄mm yr (standard deviation)

+6 = 5.0 yr, 46 = 5.0 yr

Pr 8 9 = Pr 8∗ 9 = Pr " #, 9 ≤ 0

Exact solution possible through numerical intergation
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Time-integrated approach (2)

The monotonicity assumption on ! " may not hold in general.

Consider the R-S problem. If # " ≡ #:

%& 0, ) = Pr # < !./0 , 

where !./0 = max ! " |" ∈ 0, ) . 

If a suitable model for the CDF 6789: ⋅ of !./0 is available, then %& 0, ) can be
evaluated by time-invariant reliability methods. 

If # " is time-variant, or, more generally, if < =, " shows random fluctuations in time, advanced methods
based on out-crossing theory or Monte Carlo simulation are typically required to evaluate %& 0, ) .

7

Image Source: Wang C. Structural reliability and time-dependent reliability. 2021 Springer series in reliability engineering, Springer Cham.
DOI https://doi.org/10.1007/978-3-030-62505-4 .

https://doi.org/10.1007/978-3-030-62505-4


Discretized approach

• Divide the whole service period 0, # into multiple time units 0 = %& < %( <)))< %* = #
• A common choice is yearly intervals, but a finer discretization is adopted if the service life is short

• Define interval failure events +,∗ = min1∈(4567,45]9 :;, < − > < ≤ 0 ; A = 1,… ,D; random variables :; that 
determine resistance are separable from those that determine the load effects.

• 9 % is monotonically non-increasing.

• Interval failure probability:

>*EF,, = max > % |% ∈ (%,J(, %,] .

maximum error Pr 9 :;, %, ≤ >*EF,, − Pr 9 :;, %,J( ≤ >*EF,,

• Pr +,∗ can be estimated by time-invariant reliability analysis.
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Discretized approach (2)

• In the general case ! = #$, &'(, & ) , where &'( is the vector of time-invariant load effects and & ) is the 
vector of time-variant load effects. 

• Interval failure events: *+∗ = min0∈('345,'3]7 #$, &'(, & 8 , 8 ≤ 0 .

• Interval failure probability: Pr *+∗ ≈ Pr 7 #$, &'(, &>?@,+, )+ ≤ 0 .

• The target failure event is a union of the interval failure events: * A = ⋃+CD
> *+∗.

• Computation of Pr * A requires accounting for the dependence between the interval failure events.

• Exact computation of Pr * A requires solving a series system reliability problem.

• Series system bounds for Pr * A :

max+CD,…,>Pr *+∗ ≤ Pr * A ≤ ∑+CD> Pr *+∗
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Monte Carlo simulation

• Simplest and most robust strategy to compute Pr # $ = Pr ⋃'()
* #'∗

• Generate samples ,-. , /01. , /*23,). ,…, /*23,*. , 5 = 1,… , 8
• Estimate of the failure probability:

Pr # $ ≈ )
:∑.()

: < min'(),…,*@ ,-. , /01. , /*23,'. , A' ≤ 0

• Coefficient of variation of the estimate: D = )EFG H I
:FG H I

• Inefficient when computing small failure probabilities. Approximately, 10J samples are required to estimate 
a failure probability of Pr # $ = 10EK with a coefficient of variation of D = 10%. Infeasible for problems 
with computationally expensive limit states. 

• If the point-in-time failure probability is desirable, e.g., in the case of a monotonically decreasing limit state, 
it can be estimated based on this approach.
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Evaluation of Pr #$∗ - First order reliability method

• Consider the interval failure probability  Pr #$∗ = Pr '$ ( ≤ 0 , where '$ ( = ' +,, ./0, .123,$, 4$
and ( = +,, ./0, .123,$ .

• Random vector ( is transformed to uncorrelated standard normal random vector 5 = 6 ( through iso-
probabilistic transformations.

• The limit state is expressed in terms of 5: 7$ 5 = '$ 689 5

• FORM uses the design point :$∗ in the 5 - space:

:$∗ = argmin @
s.t. 7$ 5 ≤ 0.

where A is the Euclidean norm.

• Pr #$∗ ≈ Φ −E$ where, E$ = :$∗ is the reliability index. 

• :$∗ can be used as the starting point of numerical optimization                                                                  
to determine :$F9∗ .
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Evaluation of Pr #$∗ - First order reliability method (2)

FORM approximation linearizes the limit state function &$ ' at ' = )$∗, i.e.,  

Pr #$∗ = Pr &$ ' ≤ 0 ≈ Pr &$- ' ≤ 0

where,

&$ ' ≈ &$- ' = &$ )$∗ + /&$ )$∗ , ' − )$∗ = /&$ )$∗ , ' − )$∗

• &$- ' is a normal random variable:

o 2$- = E &$- ' = − /&$ )$∗ , )$∗ and  4$- = Var &$- ' = /&$ )$∗

o 7$ =
89: ' ;<9:

=9:
is a standard normal random variable

o If >$ =
)9∗

)9∗
, then 

<9:

=9:
= >$, )$∗ = )$∗ = ?$.

o Pr &$- ' ≤ 0 = Pr 7$ ≤ −?$ = Φ −?$
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Evaluation of Pr # $ = Pr ⋃'()* #'∗ - extension of FORM

Recall that # $ = ⋃'()
* #'∗

• Pr ⋃'()
* #'∗ = 1 − Pr ⋂'()

* #'∗/ ≈ 1 − Pr ⋂'()
* 1' > −3'

• The random variables 1),… ,1* are mutually correlated and jointly Gaussian.

• Since 1),… ,1* have zero mean value, from symmetry we get

Pr # $ = 1 − Pr ⋂'()
* #'∗/ ≈ 1 − Φ* 7; 9

where Φ* 7; 9 is the multivariate standard normal CDF with correlation matrix 9 evaluated

at 7 = 3), … , 3* . The element 9 ',: is the correlation coefficient between 1' and 1: and is given by  

9 ',: = E 1'1: . 9 ',: can be computed from the form sensitivities <' and <:.
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Evaluation of Pr #$∗ - Subset simulation

The probability Pr #$∗ = Pr '$ ( ≤ 0 is formulated as a sequence of conditional probabilities:

Pr '$ ( ≤ 0 = ∏,-.
/ Pr '$ ( ≤ 0, '$ ( ≤ 0,1. = ∏,-.

/ 2,,,1.
4 is the number of subsets and the 0, are the intermediate thresholds with ∞ = 06 ≥ 0. ≥888≥ 0/ = 0.

• The intermediate thresholds are selected so that the conditional probabilities are large, typically 9 = 0.1.
• The probability 2,,,1. can be estimated (accurately) by the standard Monte Carlo method:

2,,,1. ≈ .
= ∑?-.

= @ '$ ( ? ≤ 0,

Samples ( ? ,A = 1,… , C are distributed according to the PDFD(,,1. E = @ FG E HIJKL M( E
NO FG E HIJKL

, where D( E

is the nominal PDF of (. The samples are generated through the Markov chain Monte Carlo method.

• During implementation, the thresholds are selected through an adaptive procedure.
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Reference: Au S.K. and Beck J.L. Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic 
Engineering Mechanics, Volume 16, 2001, pp. 263-277.



Example 1 - with FORM and subset simulation

Limit state function in the standard normal space:

!" # = % − ' ()*+,-)*+.+ /" − ' ()*0,-)*0.0 , where # = 12, 14 .

Consider /5 = 1yr, /9 = 2yr,…,/9; = 20yr. In this example, ="∗ = =∗ /" = = /" . 
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Example 1 - sequential subset simulation    

For !" < !$ … < !$&, we have '$&∗ ⊇ '"*∗ ⊇ ⋯ ⊇ '"∗.
The sequence of failure probabilities Pr '"∗ , … , Pr '$&∗ can be estimated through sequential subset 
simulation approach.

Pr '/∗ = Pr '$&∗ ∏23&
$&4/4" Pr '$&424"∗ '$&42∗

• The failure probability Pr '$&∗ is estimated using the standard subset simulation approach.

• If Pr '$&424"∗ '$&42∗ ≤ 0.1, additional subset levels can be introduced between '$&42∗ and '$&424"∗ , as in 
standard subset simulation. 

• If Pr '$&424"∗ '$&42∗ ≥ 0.1, use the failure samples in '$&42∗ to estimate Pr '$&424"∗ '$&42∗ , 
Pr '$&424$∗ '$&42∗ , Pr '$&424:∗ '$&42∗ ,…, Pr '$&424;∗ '$&42∗ , until Pr '$&424;4"∗ '$&42∗ ≤ 0.1.

• Generate failure samples in '$&424;∗ and continue the procedure.
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Example 2

The capacity of a system is described by a linearized deterioration model:

! " = $% − '" ,

the initial resistance $% = 49.5MPa is deterministic and ' is a normal random variable with mean /0 =
0.2MPa/yr and standard deviation 60 = 0.2MPa/yr.
The load effect is described by its annual maximum, 789:,<, which is i.i.d. for all years. 789:,< is a normal 
random variable with mean /= = 40MPa and standard deviation 6= = 2MPa.

> ? = ⋃<AB
8 ><∗ where ><∗ = minG∈(JKLM,JK]! O − 7 O ≤ 0 , for yearly intervals Q = ? and "B = 1yr, "S = 2yr, …

Without deterioration: 

• Interval failure probability: Pr ><∗ = Pr 789:,< > $%

• Pr > ? = 1 − ∏<AB
8 Pr ><∗W = 1 − >=XYZ,K $%

8
= 2 [ 10\] for ? = 20yr .
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Example 2 (2)

With deterioration: 

• Interval failure probability: Pr #$∗ ≈ Pr '()*,$ > - .$ = Pr 0$ 1 ≤ 0 , where 1 = 4, '()*,$
and 0$ 1 = 56 − 4.$ − '()*,$.

• Limit state in the standard normal space: 8$ 9 = 56 − :;.$ − :< − .$=;>; − =<><,$.

• Based on FORM:

o Design point ?$∗ =
@ABC DEFGC@AFGH

@AIBCIJBHI
, BH DEFGC@AFGH

@AIBCIJBHI
.

o K$ = ?$∗ = DEFGC@AFGH
@AIBCIJBHI

, L$ =
@ABC

@AIBCIJBHI
, BH
@AIBCIJBHI

.

o Pr #$∗ ≈ Pr 8$ 9 ≤ 0 = Φ −K$ .

o Pr # N ≈ 1 − Φ( P; R where P = KS, … , K( and R $,U = V;,$V;,U =
@A@WBCI

@AIBCIJBHI @WIBCIJBHI
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Example 2 (3)
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Outcrossing theory-based approach

Consider the failure event:

! " = ∃% ∈ 0, " :min-./.01 2, % ≤ 0
where 1 2, % = 0 is the limit state. 2 is comprised of all random variables and random processes in the 
structural reliability problem.

In the general case, 1 2, % is a random process. Let 4 % denote the number of out-crossings of 1 2, % from 
the safe state to the unsafe safe in the time duration (0, %].

The probability of failure for the time duration 0, " can be evaluated based on out-crossing theory:

78 0, " = Pr 1- ≤ 0 ⋃ 4 " > 0 = 1 − 1 − Pr 1- ≤ 0 Pr 4 " = 0 1- ≥ 0
1- is the limit state function value at % = 0. Failure in the time interval 0, " corresponds either to failure at % =
0 or to a later outcrossing of the limit state surface if the system is in safe state at % = 0.
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The Poisson approximation

• For a regular process ! ", $ , the outcrossing rate % $ is defined as:

% $ = lim∆+→-,∆+.-
/0 1 +234 51 + 67

3+ = lim∆+→-,∆+.-
/0 89.- ⋂ 89;<9=-

3+

• The expected number of outcrossings in the time interval (0, $] is given by E B $ = ∫-
+ % D ED.

• If the occurrence of outcrossings is modeled by a Poisson point process

o the probability of no outcrossing in time interval (0, T] is approximated as:

Pr B I = 0 !- ≥ 0 = ∫K
L M + N+

K
OP ∫K

L Q 9 R9

-! = T5 ∫K
L M + N+

o the failure probability for the time interval 0, I is approximately evaluated as:

UV 0, I = 1 − 1 − Pr !- ≤ 0 T5 ∫K
L M + N+

• The probability Pr !- ≤ 0 can be evaluated using time-invariant reliability methods.

21



Outcrossing rate: Rice’s formula

We consider ! ", $ = & $ − ( ", $ , i.e., failure occurs when the 
process ( ", $ outcrosses the barrier & $ . 

Define ) $ ≡ ( ", $ . It is assumed ) $ is differentiable.
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• Consider a segment of the sample + $ between the time
instants $, and $, + .$.

• For sufficiently small .$, the curves can be taken as straight lines:

o + $, + .$ = + $, + +̇.$
o & $, + .$ = & $, + &̇.$

• Outcrossing occurs at time $, +.$:
o + $, ≤ & $,
o + $, + .$ ≥ & $, + .$ , i.e., +̇.$ − &̇.$ ≥ & $, − + $,

Image Source: Melchers R.E. and Beck A.T. Structural reliability analysis and prediction. 2018 John Wiley and Sons Ltd.



Outcrossing rate: Rice’s formula
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• Number of out-crossings in the time interval !":

# = ∫'̇
( ∫') '̇)*̇ +,

' -..̇ /, /̇; "2 !/!/̇

-..̇ /, ̇/; "2 is the joint PDF of  3 " and 3̇ " at " = "2

• As !" → 0, -..̇ /, /̇; "2 can be approximated by -..̇ 6, /̇; "2
over the range 6 − 6̇ − /̇ !" ≤ / ≤ 6:

# = ∫'̇
( 6̇ − /̇ !"-..̇ 6, /̇; "2 !/̇

• Outcrossing rate at time " = "2:

9 "2 = lim+,→=
>
+, = ∫'̇

( 6̇ − /̇ -..̇ 6, /̇; "2 !/̇
o If 6 is time-independent, 6̇ = 0.

o Knowledge of -..̇ 6, /̇; "2 for all "2 ∈ (0, A] is required.



Special case of a Gaussian process
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• If ! " is a stationary Gaussian process: 

o #$ " = E ! " ≡ #$, ($) " = * ! " − #$ " ) ≡ ($), #$̇ " = 0 and ($̇) " ≡ ($̇).
o The random variables ! " and !̇ " are independent:

.$$̇ / "0 , 2̇; "0 = 0
)45656̇

exp − 0
)

: ;< =>6
56

)
+ @̇A

56̇
A

o If / " ≡ /, the outcrossing rate B " = 56̇
)456

exp − 0
)

:=>6
56

)
, for all " ∈ (0, E].

• If ! " is a non-stationary Gaussian process:

B " =
56̇ ; 0=G66̇

A ;
56 ; H : ; =>6 ;

56 ; H −ℎ " + ℎ " Φ ℎ "
where ℎ " = G66̇ ; : ; =>6 ;

56 ; 0=G66̇
A ;

and K$$̇ " is the correlation coefficient between ! " and !̇ " . 



Example 3 - Linear dynamic system
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• Idealized SDOF structure:

!#̈ $ + &#̇ $ + (# $ = * $
Initial conditions: # 0 = 0, #̇ 0 = 0

ℎ- $ is the impulse response function, given by:

ℎ- $ = .
/01

2304 sin 89$ ; $ ≥ 0

with 8 = ;
/, 89 = 8 1 − >?, > = @

?/0.  

• Displacement # $ (assuming system is time-invariant):

# $ = ∫B
4 ℎ- $ − C * C DC

• Failure event:

E F = minBH4HIJ∗ − # $ ≤ 0

* $ , # $

M N is a Gaussian random process



Example 3 (2)
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• We consider ! " is a Gaussian random process
o # " is a Gaussian random process

o #̇ " = &
&' # " = ∫)

' ℎ+̇ " − - ! - .- is a Gaussian random process, where ℎ+̇ " = &
&' ℎ+ " .

• Joint statistics of # " and #̇ " :

o /+ " = E # " = ∫)
' ℎ+ " − - /1 - .-, where /1 " = E ! " . 

o /+̇ " = E #̇ " = ∫)
' ℎ+̇ " − - /1 - .-. 

o 2+3 " = E # " − /+ " 3 = ∫)
' ∫)

' ℎ+ " − -4 511 -4, -3 ℎ+ " − -3 .-4.-3 .

o 2+̇3 " = ∫)
' ∫)

' ℎ+̇ " − -4 511 -4, -3 ℎ+̇ " − -3 .-4.-3

o COV # " , #̇ " = E # " − /+ " #̇ " − /+̇ " = ∫)
' ∫)

' ℎ+ " − -4 511 -4, -3 ℎ+̇ " − -3 .-4.-3
where 511 -4, -3 = E ! -4 − /1 -4 ! -3 − /1 -3 .



Discretized approach: random number of discrete events

• The discretization is in terms of the number of occurrence of a particular event, e.g., a storm or an
earthquake of a particular duration.

• The number of discrete events as well as the time of occurrence is random.

• The interval failure events: !"∗ $ = min)∈(,-,,-/0,-]2 3 − 5 3 ≤ 0 ,where $ = <=, … , <? is the random
vector comprising of the occurrence time instants.

<@ <A <B

C<A
C<B

C<B ≪ <
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Load occurrence model

• Load occurrence is commonly modelled by a Poisson point process.

• For a stationary Poisson process with occurrence rate !: 

o PMF of the number of loads in 0, $ is Pr ' $ = ) = *+ ,-./0
1! ; ) = 0,1,2, ….

o Joint PDF of the occurrence times is given by 67 8 = 9
+

1
, where 8 = :9, … , :1 ∈ 0, $ 1.

• For a non-stationary Poisson process with time-variant occurrence rate ! : :

o PMF of the number of loads in 0, $ is Pr ' $ = ) = ∫=
0 * > ?>

,
-. ∫=

0 / @ A@

1! ; ) = 0,1,2, ….

o Joint PDF of the occurrence times is given by 67 8 = ∏CD9
1 * >E

∫=
0 * > ?>

, where 8 = :9, … , :1 ∈ 0, $ 1.
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Solution approach

Consider the number of discrete events  ! " = $ and occurrence times % = &', … , &* ~,- % .

The (conditional) time-dependent probability of failure: 

Pr 0 " ! " = $, - = % = Pr ⋃23'
* 02∗ %

Considering the randomness in the load occurrence times, we get:

Pr 0 " ! " = $ = ∫6
7888 ∫6

7 Pr ⋃23'
* 02∗ % ,- &', … , &* 9&' 888 9&*

Taking into consideration the randomness associated with the number of load events:

Pr 0 " = ∑*36; Pr ! " = $ Pr 0 " ! " = $
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Summary
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• Basic approaches for time-variant reliability analysis: time-integrated approach, discretized approach and
outcrossing theory-based approach.

• The first two methods enable the failure probability over the whole service life of the structure to be
evaluated using time-invariant reliability methods.

• The outcrossing theory-based approach establishes the limit state function as a random process. The
time-variant reliability is solved as a first-passage problem based on the Poisson approximation.

• The outcrossing rate of the limit state function can be evaluated using alternative methods: Rice’s
formula, PHI2 method etc.

• Methods based on Monte Carlo simulation are more versatile for time-variant reliability estimation.
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