Grundlagenforschung und baupraktische Untersuchungen zu gefrorenen Böden am Zentrum Geotechnik TUM-ZG

Geotechnik-Tag in München 2024

Ulrich Schindler, Stylianos Chrisopoulos, Roberto Cudmani

Technische Universität München, Zentrum Geotechnik

Überblick

- Ein Rückblick: Untersuchungen zu gefrorenem Boden an TUM-ZG
- Aktuelle Untersuchungen bei TUM-ZG
 - Kommendes DFG Projekt zur Eislindenbildung
 - Experimentelle und numerische Untersuchungen zum mechanischen Verhalten von gefrorenen Böden (Dissertation Ulrich Schindler)
- Verwendung von Forschungsergebnissen in Vereisungsprojekten TUM-ZG

Gefrorene Böden am TUM-ZG: Ein Rückblick

Erdbauarbeiten (beginnend mit Prof. Jelinek and Prof. Floss)

ZTVE-StB17 Frostempfindlichkeit von grob- und feinkörnigen Böden

Aufbauend auf Floss (1973)

Gefrorene Böden am TUM-ZG: Ein Rückblick

Bahnsteigerweiterung U6 München unter dem alten Rathaus

- Vereisung als temporäres, statisch tragendes und abdichtendes Baubehelf
 - Frostkörper lag in tertiären Sanden und Tonen
 - Volumetrische Verformungen während des Gefrier- und Tauvorgangs

Fillibeck et al. (2005), Kellner (2007)

2024: Langfristiges DFG Projekt bei TUM-ZG

Grundlagenforschung zur Eislinsenbildung

Gefördert durch

Baupraktische Anwendung der Baugrundvereisung

Baupraktische Anwendung der Baugrundvereisung

Mechanisches Verhalten von gefrorenen granularen Böden

- Es gibt wenige höherwertige Stoffmodelle, die das komplexe raten-, spannungs- und temperaturabhängige mechanische Verhalten von gefrorenen Böden beschreiben
- Bisher überwiegend in der Praxis: Verwendung von vereinfachten Stoffmodellen und analytischen Ansätzen
 - → Uberdimensionierung bzw. ressourcenintensive Dimensionierung der Frostkörper
- Entwicklung eines neuartigen h\u00f6herwertigen Stoffmodells durch TUM-ZG zur Beschreibung des Scher- und Kriechverhaltens gefrorener granularer B\u00f6den
 - Berücksichtigung von unterschiedlichen Temperaturen, Spannungen und Dehnungsraten
 - Berücksichtigung des (positiven) Einflusses des mittleren Drucks auf das Scher- und Kriechverhalten

Modelversion gemäß Cudmani et al. (2023)

Gleichungen des elastisch-viskoplastischen Stoffmodells

$$\dot{\boldsymbol{\sigma}} = \mathbb{L} : (\dot{\boldsymbol{\varepsilon}} - \dot{\boldsymbol{\varepsilon}}_{v})$$

$$\mathbb{L} = K\mathbf{1} \otimes \mathbf{1} + 2G \left(\mathbb{I} - \frac{1}{3} \right) \mathbf{1} \otimes \mathbf{1}$$

$$\dot{\boldsymbol{\varepsilon}}_{v} = ||\dot{\boldsymbol{\varepsilon}}_{m}|| \times \exp(-\beta) \exp\left(\beta \frac{t}{t_{m}}\right) \left(\frac{t}{t_{m}}\right)^{-\beta} \frac{s}{||s||}$$

$$||\dot{\boldsymbol{\varepsilon}}_{m}|| = \sqrt{\frac{3}{2}} \dot{\boldsymbol{\varepsilon}}_{\alpha} \exp\left\{ \left(\frac{K_{1}}{\theta + 273 \cdot 4} + \ln \dot{\boldsymbol{\varepsilon}}_{\alpha}\right) \left[\frac{\sigma_{cr}(p, q, \phi)}{\sigma_{\alpha}(\theta)} - 1\right] \right\}$$

$$t_{m} = \sqrt{\frac{3}{2}} c/||\dot{\boldsymbol{\varepsilon}}_{m}|| \qquad \sigma_{\alpha}(\theta) = \alpha_{1}(-\theta)^{\alpha_{2}}$$

$$\sigma_{cr}(p, q, \phi) = \frac{1}{2} \left(\left[B\cos(\phi - \pi/3) + C\right]q + Dp \right\}$$

$$+ \sqrt{\left\{ \left[B\cos(\phi - \pi/3) + C\right]q + Dp \right\}^{2} + 4Aq^{2}}$$

<u>Parameter</u>

Table 2. Material constants for the proposed model

	Parameter	Value	Unit
One-dimensional model	E	500	MPa
	v	0.30	_
	c	2.40	%
	a_1	3.05	MPa/°C
	a_2	0.59	l –
	β	0.69	l –
	K_1	3817	K
Extended novel model	A	2.11	_
	B	3.18	_
	C	-1.60	_
	D	-3.33	_

Eindeutiges Vorgehen zur Parameterkalibrierung

Validierung des Modells: Triaxiale Druckversuche

• Einfluss der Dehnungsrate

$$\theta = -10^{\circ}\text{C}; \sigma_3 = 10 \text{ MPa}$$

Validierung des Modells: Triaxiale Kriechversuche

$$\theta = -10^{\circ}\text{C}; p = 4 \text{ MPa};$$

q = variabel

t: min

*ἐ*₁: %/min

Praktische Relevanz von nicht monotoner statischer Belastung

Unterschiedliche Bauphasen und Ausbruchsverfahren führen zu stufenweiser
 Be- und/oder Entlastung des gefrorenen Erdkörpers

Mehrere Bauphasen

Ausbruch in Teilflächen

Erweiterung des Stoffmodells für nicht monotone Belastungen

Berücksichtigung von nicht monotone Belastungen

Koppelung der Kriechzeit mit der Spannungs-Dehnung Geschichte zur Berücksichtigung von mehrstufigen Belastungen

Einführung der transformierten Kriechzeit t*

Erweitertes Modell → EVPFROZEN Schindler et. al. (2023)

Validierung des Modells (EVPFROZEN)

Stufenweise Belastung

- Experiment: Symbole
- Simulation: Linien
 -10°C

Validierung des Modells anhand von Elementtests

Umfangreiches Testen und Validieren des Modells in Randwertproblemen
→ FEM Simulationen (ABAQUS)

Verwendung des Stoffmodells in FEM Simulationen in praktischen Anwendungen

Nachrechnung eines großmaßstäblichen Versuchs nach Cai et al. (2019)

Schematische Darstellung (links) and die tatsächlichen ausgebrochenen Tunnelquerschnitte (rechts) [nach Cai et al. (2019)]

Nachrechnung eines großmaßstäblichen Versuchs nach Cai et al. (2019)

Vergleich zwischen den gemessenen und berechneten (EVPFROZEN) vertikalen Verschiebungen oberhalb der Tunnel

Symbole: Versuch

Linien: Simulation

Nachrechnung eines großmaßstäblichen Versuchs nach Cai et al. (2019)

Die Überlappung von zwei gefrorenen Bodenkörpern reduziert signifikant die Gesamtsetzungen für den zweiten Tunnelaushub

Linien: Simulation

Simulationen der Kriechphase beim Tunnelausbruch

Modellversuch nach Orth and Meissner (1985)

Simulationen der Kriechphase beim Tunnelausbruch

Nachrechnung des Modellversuchs nach Orth and Meissner (1985)

Ausgewählte Veröffentlichungen (Peer-reviewed Journals)

- Cudmani, R., Yan, W., and Schindler, U. 2023. A constitutive model for the simulation of temperature-, stress- and rate-dependent behaviour of frozen granular soils. Géotechnique, 73:12, 1043-1055.
- Schindler, U., Cudmani, R., Chrisopoulos, S., and Schünemann, A. 2024. Multistage creep behavior of frozen granular soils: Experimental evidence and constitutive modeling. Canadian Geotechnical Journal, 61(1): 118-133.
- Schindler, U., Chrisopoulos, S., and Cudmani, R. 2023. Artificial ground freezing applications using an advanced elastic-viscoplastic model for frozen granular soils. Cold Regions Science and Technology, 215, 103964.
- Schindler, U., Chrisopoulos, S., Cudmani, R., and Vogt, S. (submitted). Constitutive modeling of frozen soil creep behavior under non-monotonic static loading. Computers and Geotechnics, under review.
- Schindler, U. Dissertation (in Begutachtung). Experimental and numerical contributions to the mechanical behavior of frozen coarse-grained soils. Verteidigung: Sommer 2024

Vereisungsprojekte TUM-ZG

Voll ausgestattetes Frostlabor zur Untersuchung des mechanischen als auch volumetrisches Verhaltens

Baupraktische Verwendung des entwickelten mehrstufigen Kriechkonzepts

2023: Frostlaborprogramm für ein großes Infrastrukturprojekt in München

Bau

• 2

Natürliche Streuung der Versuchsergebnisse an "ungestörten" Proben

 $\sigma_1 [\mathrm{MPa}]$

Wie wählt man eine passende Kriechspannung, die zeitnah zum Kriechbruch der Probe führt?

const.

→ Mehrstufige Kriechversuche

Baupraktische Verwendung des entwickelten mehrstufigen Kriechkonzepts

2023: Frostlaborprogramm für ein großes Infrastrukturprojekt in München

Baupraktische Verwendung des entwickelten mehrstufigen Kriechkonzepts

2023: Frostlaborprogramm für ein großes Infrastrukturprojekt in München

Einaxialer Kriechversuch

Baupraktische Verwendung des entwickelten mehrstufigen Kriechkonzepts

• 2023: Frostlaborprogramm für ein großes Infrastrukturprojekt in München

Erkenntnisse aus dem Vergleich von einstufigen und mehrstufigen Kriechversuchen:

- Die minimale Dehnungsrate ἐ_m ist weitestgehend unabhängig von der Belastungsgeschichte
- Die Standzeit t_m hängt von der Belastungsgeschichte ab

Schindler et al. (2024)

Baupraktische Verwendung des entwickelten mehrstufigen Kriechkonzepts

2023: Frostlaborprogramm für ein großes Infrastrukturprojekt in München

Mehrstufige Kriechversuche stimmen gut überein mit einstufigen Versuchen bei der selben Temperatur

Ausgefüllte Symbole: 1D Druckversuch; Offene Symbole: 1D Kriechversuch

Zusammenfassung

- Untersuchungen zu gefrorenen Böden haben eine lange TUM-ZG Tradition
- Untersuchungen zum mehrstufigen Kriechverhalten und Entwicklung eines entsprechenden Kriechkonzepts
- Entwicklung eines h\u00f6herwertigen Stoffmodell zur Beschreibung des komplexen mechanischen Verhaltens von gefrorenen B\u00f6den
 - Validierung anhand von Element- und Modeltests für monotone und nicht monotone Belastungen
- Zusammenwirken von Forschungsergebnissen in baupraktischen Anwendungen von gefrorenen Böden
 - Mehrstufige Kriechversuche
 - Zeit- und Kostenersparnisse

Vielen Dank für Ihre Aufmerksamkeit!