Grundlagenforschung und baupraktische Untersuchungen zu gefrorenen Böden am Zentrum Geotechnik TUM-ZG

Geotechnik-Tag in München 2024

Ulrich Schindler, Stylianos Chrisopoulos, Roberto Cudmani

Technische Universität München, Zentrum Geotechnik

- Ein Rückblick: Untersuchungen zu gefrorenem Boden an TUM-ZG
- Aktuelle Untersuchungen bei TUM-ZG
 - -Kommendes DFG Projekt zur Eislindenbildung
 - Experimentelle und numerische Untersuchungen zum mechanischen Verhalten von gefrorenen Böden (Dissertation Ulrich Schindler)
- Verwendung von Forschungsergebnissen in Vereisungsprojekten TUM-ZG

Gefrorene Böden am TUM-ZG: Ein Rückblick

 \sum

ПΠ

Erdbauarbeiten (beginnend mit Prof. Jelinek and Prof. Floss)

• ZTVE-StB17 Frostempfindlichkeit von grob- und feinkörnigen Böden

Ungleichförmigkeitszahl $C_{\rm U}$ = d₆₀/d₁₀

Gefrorene Böden am TUM-ZG: Ein Rückblick

Bahnsteigerweiterung U6 München unter dem alten Rathaus

- Vereisung als temporäres, statisch tragendes und abdichtendes Baubehelf
 - Frostkörper lag in tertiären Sanden und Tonen
 - Volumetrische Verformungen während des Gefrier- und Tauvorgangs

2024: Langfristiges DFG Projekt bei TUM-ZG

Grundlagenforschung zur Eislinsenbildung

 \bigcirc

Gefördert durch

ПΠ Baupraktische Anwendung der Baugrundvereisung Supply line Down pipe Exhaust, LN₂ Return line, brine Frozen soil Freeze pipe

Baupraktische Anwendung der Baugrundvereisung

Mechanisches Verhalten von gefrorenen granularen Böden

 \bigcirc

- Es gibt wenige höherwertige Stoffmodelle, die das komplexe raten-, spannungs- und temperaturabhängige mechanische Verhalten von gefrorenen Böden beschreiben
- Bisher überwiegend in der Praxis: Verwendung von vereinfachten Stoffmodellen und analytischen Ansätzen
 - → Überdimensionierung bzw. ressourcenintensive Dimensionierung der Frostkörper
- - Berücksichtigung von unterschiedlichen Temperaturen, Spannungen und Dehnungsraten
 - Berücksichtigung des (positiven) Einflusses des mittleren Drucks auf das Scher- und Kriechverhalten

Modelversion gemäß Cudmani et al. (2023)

Gleichungen des elastisch-viskoplastischen Stoffmodells

 $\dot{\boldsymbol{\sigma}} = \mathbb{L} \; : \; (\dot{\boldsymbol{\varepsilon}} - \dot{\boldsymbol{\varepsilon}}_v)$

$$\begin{split} \mathbb{L} &= K\mathbf{1} \otimes \mathbf{1} + 2G\left(\mathbb{I} - \frac{1}{3}\right)\mathbf{1} \otimes \mathbf{1} \\ \dot{\boldsymbol{\varepsilon}}_{v} &= \|\dot{\boldsymbol{\varepsilon}}_{m}\| \times \exp(-\beta) \exp\left(\beta \frac{t}{t_{m}}\right) \left(\frac{t}{t_{m}}\right)^{-\beta} \frac{s}{\|\boldsymbol{s}\|} \\ \|\dot{\boldsymbol{\varepsilon}}_{m}\| &= \sqrt{\frac{3}{2}} \dot{\boldsymbol{\varepsilon}}_{a} \exp\left\{\left(\frac{K_{1}}{\theta + 273 \cdot 4} + \ln \dot{\boldsymbol{\varepsilon}}_{a}\right) \left[\frac{\sigma_{cr}(p, q, \phi)}{\sigma_{a}(\theta)} - 1\right]\right\} \\ t_{m} &= \sqrt{\frac{3}{2}} c/\|\dot{\boldsymbol{\varepsilon}}_{m}\| \qquad \sigma_{\alpha}(\theta) = \alpha_{1}(-\theta)^{\alpha_{2}} \\ \sigma_{cr}(p, q, \phi) &= \frac{1}{2} \left(\{[B\cos(\phi - \pi/3) + C]q + Dp\} + \sqrt{\{[B\cos(\phi - \pi/3) + C]q + Dp\}^{2} + 4Aq^{2}}\right) \end{split}$$

Parameter

Table 2. Material constants for the proposed model

	Parameter	Value	Unit
One-dimensional model	E v c a_1	500 0·30 2·40 3·05	MPa - % MPa/°C
Extended novel model	$ \begin{array}{c} a_2\\ \beta\\ K_1\\ A\\ B\\ C\\ D \end{array} $	$\begin{array}{c} 0.59 \\ 0.69 \\ 3817 \\ 2.11 \\ 3.18 \\ -1.60 \\ -3.33 \end{array}$	 K

Eindeutiges Vorgehen zur Parameterkalibrierung

Validierung des Modells: Triaxiale Druckversuche

15

00000000

O ἐ₁ = 0.005 %/min

□ έ₁ = 0·1 %/min

💼 🛓 = 1 %/min

5

έ₁ = 0·01 %/min

10

E1: %

(a)

15

10

5

0

20

q: MPa

- Einfluss der Dehnungsrate
- $\theta = -10^{\circ}$ C; $\sigma_3 = 10$ MPa

20

15

5

0

ţ

q: MPa 10

(b)

Einschränkung: Modelversion gemäß (Cudmani et al. (2023)) nur verwendbar für überwiegend monotone Belastungen

10

Praktische Relevanz von nicht monotoner statischer Belastung

 Unterschiedliche Bauphasen und Ausbruchsverfahren f
ühren zu stufenweiser Be- und/oder Entlastung des gefrorenen Erdk
örpers

Teilflächen

Erweiterung des Stoffmodells für nicht monotone Belastungen

Berücksichtigung von nicht monotone Belastungen

Koppelung der Kriechzeit mit der Spannungs-Dehnung Geschichte zur Berücksichtigung von mehrstufigen Belastungen

• Einführung der transformierten Kriechzeit t*

Validierung des Modells (EVPFROZEN)

Stufenweise Belastung

$$\sigma_1 = \text{const.} \quad \clubsuit \quad \varepsilon_1$$

 \mathcal{O}

- Experiment: Symbole
- Simulation: Linien -10°C

ТШ

Nachrechnung eines großmaßstäblichen Versuchs nach Cai et al. (2019)

Schematische Darstellung (links) and die tatsächlichen ausgebrochenen Tunnelquerschnitte (rechts) [nach Cai et al. (2019)]

ПΠ

Nachrechnung eines großmaßstäblichen Versuchs nach Cai et al. (2019)

16

Nachrechnung eines großmaßstäblichen Versuchs nach Cai et al. (2019)

Die Überlappung von zwei gefrorenen Bodenkörpern reduziert signifikant die Gesamtsetzungen für den zweiten Tunnelaushub

Ш

Simulationen der Kriechphase beim Tunnelausbruch

Modellversuch nach Orth and Meissner (1985)

Simulationen der Kriechphase beim Tunnelausbruch

Nachrechnung des Modellversuchs nach Orth and Meissner (1985)

Ausgewählte Veröffentlichungen (Peer-reviewed Journals)

- Cudmani, R., Yan, W., and Schindler, U. 2023. A constitutive model for the simulation of temperature-, stress- and rate-dependent behaviour of frozen granular soils. *Géotechnique*, 73:12, 1043-1055.
- Schindler, U., Cudmani, R., Chrisopoulos, S., and Schünemann, A. 2024. Multistage creep behavior of frozen granular soils: Experimental evidence and constitutive modeling. *Canadian Geotechnical Journal*, 61(1): 118-133.
- Schindler, U., Chrisopoulos, S., and Cudmani, R. 2023. Artificial ground freezing applications using an advanced elastic-viscoplastic model for frozen granular soils. *Cold Regions Science and Technology*, 215, 103964.
- Schindler, U., Chrisopoulos, S., Cudmani, R., and Vogt, S. (submitted). Constitutive modeling of frozen soil creep behavior under non-monotonic static loading. *Computers and Geotechnics*, under review.
- Schindler, U. Dissertation (in Begutachtung). Experimental and numerical contributions to the mechanical behavior of frozen coarse-grained soils. Verteidigung: Sommer 2024

Vereisungsprojekte TUM-ZG

Voll ausgestattetes Frostlabor zur Untersuchung des mechanischen als auch volumetrisches Verhaltens

πп

Baupraktische Verwendung des entwickelten mehrstufigen Kriechkonzepts

• 2023: Frostlaborprogramm für ein großes Infrastrukturprojekt in München

TUM-ZG: Zusammenwirken von Forschung und Praxis Bau Natürliche Streuung der

Wie wählt man eine passende Kriechspannung, die zeitnah zum Kriechbruch der Probe führt?

 $\tau_1 \, [\mathrm{MPa}]$

S

const.

Baupraktische Verwendung des entwickelten mehrstufigen Kriechkonzepts

• 2023: Frostlaborprogramm für ein großes Infrastrukturprojekt in München

Baupraktische Verwendung des entwickelten mehrstufigen Kriechkonzepts

• 2023: Frostlaborprogramm für ein großes Infrastrukturprojekt in München

Baupraktische Verwendung des entwickelten mehrstufigen Kriechkonzepts

• 2023: Frostlaborprogramm für ein großes Infrastrukturprojekt in München

Erkenntnisse aus dem Vergleich von einstufigen und mehrstufigen Kriechversuchen:

- Die minimale Dehnungsrate ė_m ist weitestgehend unabhängig von der Belastungsgeschichte
- Die Standzeit t_m hängt von der Belastungsgeschichte ab

Schindler et al. (2024)

Baupraktische Verwendung des entwickelten mehrstufigen Kriechkonzepts

• 2023: Frostlaborprogramm für ein großes Infrastrukturprojekt in München

Mehrstufige Kriechversuche stimmen gut überein mit einstufigen Versuchen bei der selben Temperatur

Ausgefüllte Symbole: 1D Druckversuch; Offene Symbole: 1D Kriechversuch

Zusammenfassung

- Untersuchungen zu gefrorenen Böden haben eine lange TUM-ZG Tradition
- Untersuchungen zum mehrstufigen Kriechverhalten und Entwicklung eines entsprechenden Kriechkonzepts
- Entwicklung eines höherwertigen Stoffmodell zur Beschreibung des komplexen mechanischen Verhaltens von gefrorenen Böden
 - Validierung anhand von Element- und Modeltests f
 ür monotone und nicht monotone Belastungen
- Zusammenwirken von Forschungsergebnissen in baupraktischen Anwendungen von gefrorenen Böden
 - Mehrstufige Kriechversuche
 - Zeit- und Kostenersparnisse

Vielen Dank für Ihre Aufmerksamkeit!