Concepts of High-Temperature Aquifer Thermal Energy Storage (HT-ATES) (> 50 °C) are investigated in this study for system application in the Upper Jurassic reservoir (Malm aquifer) of the German Molasse Basin (North Alpine Foreland Basin). The karstified and fractured carbonate rocks exhibit favourable conditions for conventional geothermal exploitation of the hydrothermal resource. Here, we perform a physics-based numerical analysis to further assess the sustainability of HT-ATES development in the Upper Jurassic reservoir. With an estimated heating capacity of approx. 19.5 MW over half a year, our approach aims at determining numerically the efficiency of heat storage under the in situ Upper Jurassic reservoir conditions and projected operation parameters. In addition, the hydraulic performance of the HT-ATES system is further evaluated in terms of productivity and injectivity index.
News
New paper published - Physics-based numerical evaluation of High-Temperature Aquifer Thermal Energy Storage (HT-ATES)
news-hydro |